

EE 341 Fall 2012

EE 341 – Homework Chapter 4

4.2 For the functions

 $\Phi 1(t)=e^{-2|t|}$ and $\Phi 2(t)=1-Ke^{-4|t|}$

Determine the value of K such that the functions are orthogonal over the interval $[-\infty,\infty]$.

4.5 The Haar functions are very popular in signal processing and wavelet applications. These functions are generated using a scale parameter (m) and a translation parameter (n). Let the mother Haar function (m=n=0) be defined as follows:

$$H0,0(t) = \begin{cases} 1 & 0 \le t \le 0.5 \\ -1 & 0.5 \le t \le 1 \\ 0 & o.w. \end{cases}$$

The other Haar functions, at scale m and with translation n, are defined using the mother Haar functions as follows:

$$Hm, n(t) = H0, 0(2^{m}t - n), \quad n = 0, 1, ... (2^{m} - 1)$$

The Haar functions for m=0,1,2 are shown in Fig. P4.5.

Show that the Haar wavelet functions {Hm,n(t), m=0,1,2,..., n=0,1,2,... $(2^{m}-1)$ form a set of orthogonal functions over the interval [0,1] by proving the following:

$$\int_0^1 Hm, n(t)Hp, q(t)dt = \begin{cases} 2^{-m} & m = p, n = q \\ 0 & o.w. \end{cases}$$

4.24 The impulse response of an LTIC system is given by

$$h(t) = e^{-2|t|}$$

- (a) Based on the Eq. (4.73), calculate the T.F. $H(\omega)$ of the LTIC system.
- (b) The plot of magnitude $|H(\omega)|$ with respect to ω is referred to as the magnitude spectrum of the LTIC system. Plot the magnitude spectrum of the LTIC system for the range (- $\infty < \omega < \infty$).
- (c) Calculate the output response y(t) of the LTIC system if the impulse train shown in Fig. 4.7 is applied as an input to the LTIC system.

4.27 Consider the following periodic functions represented as CTFS:

(i)
$$x1(t) = \frac{7}{\pi} \sum_{m=0}^{\infty} \frac{1}{2m+1} \sin \left[8\pi (2m+1)t \right];$$

(ii)
$$x^2(t) = 1.5 + \sum_{m=0}^{\infty} \frac{1}{4m+1} \cos \left[2\pi(4m+1)t\right].$$

- (a) Determine the fundamental period x(t).
- (b) Determine if x(t) is an even signal or an odd signal.
- (c) Using the ictfs.m function provided in the CD, calculate and plot the functions in the time interval -1≤t≤1. [Hint: You may calculate x(t) for t=[-1:0.01:1]. The MATLAB "plot" function give a smooth interpolated plot.]
- (d) From the plot in step ©, determine the period of x(t). Does it match your answer to part (a)?