EE 451 – LAB 1

Introduction to Texas Instruments TMS320C6713 DSP Starter Kit (DSK) digital signal processing board

This laboratory introduces you to the TMS320C6713 DSK board module:

- An overview of the functional blocks of the board.
- Code Composer Studio (CCS).
- Writing, compiling, and running a simple code.
- Learn how to generate a tone.

Introduction

The TI's TMS320C6713 DSK is designed and optimized to perform digital signal processing operations. For short this DSP will be referred to as '*C6713*. The family of this DSP is referred to as '*C6x* or '*C6000*. '*C6713* is a high performance 32-bit floating-point DSP.

The basic operation in digital signal processing is solving the following equation.

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

The DSP has to be able to perform the above operation very efficiently and very fast. For example, for a 100-tap FIR filter, where M=99, the DSP will have to be able to store 99 samples, and perform 100 multiplication and 100 summation operations between every two samples. Therefore the DSP implements multiply-accumulate (*MAC*) hardware with circular addressing capabilities very efficiently.

The Texas Instruments TMS320C6713DSK operates at 225MHz and has the following features:

- 16 Mbytes of synchronous DRAM on a 32-bit External Memory Interface (EMIF).
- 512 Kbytes, 8-bit interface (256Kb usable).
- An AIC23 stereo codec (coder /decoder) with 12 MHz system clock.
- 4 user LEDs and DIP switches through a Complex Programmable Logic Device (CPLD).
- Software board configuration through registers implemented in CPLD.

• Standard expansion connectors for daughter card.

These features are shown in Figure 1.

TI's Code Composer Studio is a development tool that will be used to program the DSP. The version that comes with the board includes a chip support library (*CSL*) and a board support library (*BSL*). The CSL provides a C-language interface for configuring and controlling on-chip peripherals. The BSL provides a C-language interface for configuring and controlling all on-board devices.

Figure 1. Key features of the C6713 DSK.

The Lab

Create a program that directs the AIC23 codec to generate a 1 KHz sine wave on the headphone output.

- 1. Connect the board to power.
- Start CCS and begin a new project. Create a new project using Project → New, then input the name of the project, location of the project, type of project (executable), and the target will be the TMS320C67 board. An executable file (*.out) will be created in the ./Debug directory and this is the file that will be downloaded onto the board.
- 3. Create a new source by using File \rightarrow New \rightarrow Source File and save it as a C file (i.e. YourProgram.c). This file will contain headers, define statements and the main()

program. To add source files, header, libraries and command files use Project \rightarrow Add Files to Project... The header files that need to be included are:

- dsk6713.h which contains DSK6713 board specific I/O register definitions.
- dsk6713_aic23.h codec interface for AIC23 on the DSK6713 board.
- dsk6713config.h general initialization of the AIC23 (to be provided).
- math.h required when using math functions.
- 4. You need to set the compiler and linker options for the CS6713 DSK. You can access these setting by using Project → Build Options and then selecting Compiler and the Linker tabs to make the changes:

• **Complier Options:** In the Basic category set Target Version to C671x. In the Advanced category set Memory Models to Far, and in the Preprocessor category set Pre-Define Symbol to CHIP_6713. Set the Include Search Path to where the ...\C6000\dsk6713\include directory is in your computer (if it is not already set).

• Linker Options: In the Basic category set the Output File name to .\Debug\YourProgram.out, the Library Search Path to the ...\C6000\dsk6713\lib directory (if it is not already set) and Include Libraries to rts6700.lib; dsk6713bsl.lib; csl6713.lib.

- 5. Build the project using Project → Build. This compiles and assembles all the C files, and the resulting object file(s) are then linked with the library files. In the building process all the dependent files are included too. Select File → Load Program to load YourProgram.out, and then Debug → Run to run the program. To stop execution of the program you need to use Debug → Halt.
- 6. Before you use the board, you need to initialize the board, start the codec, and set the AIC23 frequency to 8 KHz (the default sampling frequency is 48 KHz). Next, you need to discretize the continuous-time sine wave given by

$$y(t) = \sin(2\pi f_0 t)$$

Assume that that $f_0 = 1$ KHz.

7. Use the template shown in Figure 2 to start your program.

```
//======= Lab1.c =======
// This program generates a 1KHz sinusoidal signal
// using the polling method
11
#include <math.h>
#include "dsk6713.h"
#include "dsk6713_aic23.h"
                                                               // codec support
#include "dsk6713config.h"
Uint32 fs = DSK6713_AIC23_FREQ_8KHZ;
                                                               // set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC;
                                                               // select input
                                                               // sampling frequency
                                                               // freq. of signal
                                                               // amplitude
                                                               // theta
void main()
{
  DSK6713_init();
                                                               // call BSL to init DSK-EMIF,PLL)
  hAIC23_handle=DSK6713_AIC23_openCodec(0, &config);
                                                               // handle(pointer) to codec
  DSK6713_AIC23_setFreq(hAIC23_handle, fs);
                                                               // set sample rate
  DSK6713_AIC23_rset(hAIC23_handle, 0x0004, inputsource); // choose mic or line in
  MCBSP_config(DSK6713_AIC23_DATAHANDLE,&AIC23CfgData);
                                                               // interface 32 bits to AIC23
  MCBSP_start(DSK6713_AIC23_DATAHANDLE, MCBSP_XMIT_START | MCBSP_RCV_START |
 MCBSP_SRGR_START | MCBSP_SRGR_FRAMESYNC, 220);
                                                               // start data channel
  while(1)
                                                               //infinite loop
  {
                                                               // compute theta increment
                                               . . .
       AIC_data.channel[LEFT]=(short)amp*sin(theta); // data to Left channel
while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE)); // wait for ready to transmit
       MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint); // output left channel
  }
}
```

- 8. Connect your headphones or speakers to the output of the codec. Do you hear a tone? if not, what do you think the problem is?
- 9. Use the watch window to change the frequency to 500Hz. Use View → Quick Watch then type in the name of the frequency variable you used in the program. You need to declare this variable to be global.