

GPU Implementation of Adaptive
Median Filter

April 21, 2011

EE552
Andrew Ronquillo

Ian Johnson

Abstract:
An adaptive median filter is a great tool to have to remove salt and pepper noise. The
problem with implementing the adaptive median filter is the amount of time it takes to
perform all the necessary calculations on all the layers of the image. One method to help
decrease the amount of time to complete all processes is to implement the algorithm on a
GPU rather than a CPU. Results acquired show that there was an improvement in
processing time, but the improvement was not as much as expected. The results show a
1.5x times increase in speed as opposed to the theoretical 10x-50x increase in speed.

Introduction:
The adaptive median filter was implemented using MATLab. In order to have MATLab
perform at its peak performance all the code had to be vectorized. Once all the code was
vectorized, GPU software was selected. The selected GPU software was Jacket by
Accelereyes since the software was easy to implement with MATLab.

Jacket is a GPU software package that allows the user to implement MATLab on the
GPU. Jacket supports many MATLab functions and includes the image processing
toolbox with pre-written MATLab functions for use. Jacket makes the transition from
performing calculations on the GPU and the CPU extremely easy. To perform the
processing on the GPU the key ‘g’ is put in front of most functions, i.e. gsingle() or
gdouble(). Once the data is put on the GPU with Jacket, the computations are performed
on the GPU until the data is transferred back to the CPU by using regular MATLab
functions, i.e. single() or double().

Background:
An adaptive median filter algorithm is a great tool to have to remove salt and pepper
noise from images due to the simplicity of the algorithm, the robustness of the algorithm,
and the conditionals that are inside the algorithm. The conditionals are simple enough to
calculate quickly and easily, but each conditional calculation has to be made at each
iteration in the algorithm so the overall computing cost can be quite expensive when
dealing with larger images and all layers of the image. The GPU could decrease the time
of overall filtering because the GPU is amazing at doing parallel computing. The GPU
will calculate each loop iteration and every layer of the image simultaneously rather than
the CPU which calculates everything sequentially. The algorithm used for the adaptive
median filter is shown in Figure 1.

Figure 1: Adaptive Median Filter

Results:
The first test was to compare the final results of the GPU calculations to the CPU
calculations to make sure the algorithm was still being performed correctly. The final
results show that there is no visual difference between the two results so the algorithm
still works as it is supposed to. The filtered image results of one layer of the original
image are shown in Figure 2.

Figure 2: original (left); CPU (upper right); GPU (lower right)

The GPU used in this experiment was on a laptop so it was not a dedicated GPU and was
only single-precision. In order to get better results with the theoretical 10x-50x results, a
dedicated double-precision GPU will have to be used. The algorithm will have to be
completely vectorized in MATLab as well for highest potential.

To get the full spectrum on the advantages and disadvantages of the GPU vs. CPU,
several tests were performed. The tests were performed with one layer of the image, and
then with all three layers of the image. At first the tests were proven inconclusive as
shown in Figure 3. The inconclusive results were from 50 iterations of the entire
algorithm and were very confusing at first.

Figure 3: Inconclusive Results

After some slight changes in the algorithm, some different functions were used with
jacket, and more testing, conclusive results were finally recorded and are shown in Figure
4. Figure 4 shows results from 500 iteration tests.

Figure 4: Total Time of Calculations

Data Analysis:
The results presented were acquired after many different trials and discoveries. In order
for the GPU to become truly successful in dominating the CPU, all three layers of the
image had to be processed. One reason for these results is due to all the constant data
transition from GPU to CPU which takes up a lot of time. The time differences shown in
the results are when the laptop used went to sleep therefore allowing the GPU to be
completely dedicated to calculations. The difference between the 1-D (single color
plane) and 3-D (three color plane) analysis completely makes sense. The double line of
the GPU time is the result when the laptop is not asleep and still having to process
information to send to the monitor, etc.

In the 1-D analysis, the GPU is generally slower due to the constant switching of CPU
calculations and GPU calculations. The reason for the constant processing switching is
due to the Jacket unable to support break in loops, nested for loops, and other functions
used in MATLab. The reason for the lack of support is due to the GPU processing all the
for loop iterations simultaneously and the conditionals of the adaptive median filter rely
on other calculations of the for loop.

In the 3-D analysis the GPU starts to show its teeth and begins to dominate the CPU.
The CPU time is exactly three times as long to complete one iteration of the algorithm
and the GPU shows less than a 3x increase allowing the time decrease to increase
immensely. The GPU is able to process all three layers of image at once decreasing the
time by at least one third and the for loops are then calculated in parallel as well,
decreasing the processing time even more.

Conclusion:
In conclusion, Jacket is great software to use for GPU processing and has much potential.
The reason why this experiment did not produce the results claimed by Accelereyes (10
to 20 times speedup) is because a GPU that was used was not a dedicated device for
processing data. It was the general GPU for the entire computer. Also, the way the filter
was implemented required sending data back to the CPU for computation before
continuing on the GPU. This data transferring cost a lot of process time on the GPU, if
we could implement all the functions on the GPU, eliminating the data transfer problem,
the process would be much faster. Overall, the GPU is faster at producing similar results
to the CPU due to its ability to process several algorithms simultaneously instead of the
sequentially.

References:
Gonzalez, Rafael C., and Richard E. Woods. Digital Image Processing. Upper Saddle

River, NJ: Prentice Hall, 2008. Print.

Gonzalez, Rafael C., Richard E. Woods, and Steven L. Eddins. Digital Image Processing

Using MATLAB. Upper Saddle River, NJ: Pearson Prentice Hall, 2004. Print.

Jacket Documentation - Fast GPU Software for MATLAB and C/C. Web. 18 Apr. 2011.

<http://wiki.accelereyes.com/wiki/index.php?title=Main_Page>.

Appendix:

General MATLAB code
clear all
close all
clc

im = double(imread('Noisy_PCB.jpg'));
[Y X Z] = size(im);

figure; imagesc(uint8(im(:,:,2))); colormap('gray'); title('Original')

for kk = 1:1
 k(kk) = kk;
 tic
 % for ii = 1:1
 output(:,:,1) = adaptive_med_vect(im(:,:,1),7);
 output(:,:,2) = adaptive_med_vect(im(:,:,2),7);
 output(:,:,3) = adaptive_med_vect(im(:,:,3),7);
 % end
 cpu(kk) = toc;

 im_filt = double(output(:,:,2));
 figure; imagesc(uint8(im_filt)); colormap('gray'); title('CPU')
 %%%
 %%% GPU implementation
 %%%

 gsync;
 tic
 gpu_im = gsingle(im);
 output2_1 = adaptive_med_vect_gpu(gpu_im(:,:,1),7);
 output2_2 = adaptive_med_vect_gpu(gpu_im(:,:,2),7);
 output2_3 = adaptive_med_vect_gpu(gpu_im(:,:,3),7);
 geval(output2_1);
 gsync;
 gpu(kk) = toc;

 output_gpu = double(output2_2);
 figure; imagesc(uint8(output_gpu)); colormap('gray'); title('GPU')
end

%%% ============
%%% Plotting
%%% ============
speedup = cpu./gpu;
figure
plot(k,speedup,'.',k,cpu,'x',k,gpu,'*')
grid on
title('Speedup of GPU Implementation')
xlabel('Iteration Number');
legend('Speedup','CPU Time (seconds)','GPU Time (seconds)')
ylim([0 5])

CPU Filter
function f = adaptive_med_vect(g, Smax)
%ADAPTIVE_MED_VECT Perform adaptive median filtering.
% F = ADAPTIVE_MED_VECT(G, SMAX) performs adaptive median filtering of
% image G. The median filter starts at size 3-by-3 and iterates up to
% size SMAX-by-SMAX. SMAX must be an odd integer greater than 1.
%
% SMAX must be an odd, positive integer greater than 1.

if (Smax <= 1) || (Smax/2 == round(Smax/2)) || (Smax ~= round(Smax))
 error('SMAX must be an odd integer > 1.')
end
% [M, N] = size(g);

%Initial setup
f = g;
f(:) = 0;
alreadyProcessed = false(size(g));

%Begin Filtering
for k = 3:2:Smax
 zmin = ordfilt2(g, 1, ones(k, k), 'symmetric');
 zmax = ordfilt2(g, k * k, ones(k, k), 'symmetric');
 zmed = medfilt2(g, [k k], 'symmetric');

 processUsingLevelB = (zmed > zmin) & (zmax > zmed) & ~alreadyProcessed;

 zB = (g > zmin) & (zmax > g);
 outputZxy = processUsingLevelB & zB;
 outputZmed = processUsingLevelB & ~zB;
 f(outputZxy) = g(outputZxy);
 f(outputZmed) = zmed(outputZmed);

 alreadyProcessed = alreadyProcessed | processUsingLevelB;
 if all(alreadyProcessed(:))
 break;
 end
end

% Output zmed for any remaining unprocessed pixels. Note that this
% zmed was computed using a window of size Smax-by-Smax, which is
% the final value of k in the loop.
f(~alreadyProcessed) = zmed(~alreadyProcessed);

GPU Filter
function f = adaptive_med_vect_gpu(g, Smax)
%ADAPTIVE_MED_VECT Perform adaptive median filtering.
% F = ADAPTIVE_MED_VECT(G, SMAX) performs adaptive median filtering of
% image G. The median filter starts at size 3-by-3 and iterates up to
% size SMAX-by-SMAX. SMAX must be an odd integer greater than 1.
%
% SMAX must be an odd, positive integer greater than 1.

if (Smax <= 1) || (Smax/2 == round(Smax/2)) || (Smax ~= round(Smax))
 error('SMAX must be an odd integer > 1.')
end
% [M, N] = size(g);

%Initial setup
f = g;
f(:) = 0;
alreadyProcessed = false(size(g));

%Begin Filtering
for k = 3:2:Smax
 g_d = double(g);
 zmin = ordfilt2(g_d, 1, ones(k, k), 'symmetric');
 zmax = ordfilt2(g_d, k * k, ones(k, k), 'symmetric');
 zmin = gdouble(zmin);
 zmax = gdouble(zmax);
 zmed = medfilt2(g, [k k], 'symmetric');
% zmed = gdouble(zmed);

 processUsingLevelB = (zmed > zmin) & (zmax > zmed) & ~alreadyProcessed;

 zB = (g > zmin) & (zmax > g);
 outputZxy = processUsingLevelB & zB;
 outputZmed = processUsingLevelB & ~zB;
 f(outputZxy) = g(outputZxy);
 f(outputZmed) = zmed(outputZmed);

 alreadyProcessed = alreadyProcessed | processUsingLevelB;
 if all(alreadyProcessed(:))
 break;
 end
end

% Output zmed for any remaining unprocessed pixels. Note that this
% zmed was computed using a window of size Smax-by-Smax, which is
% the final value of k in the loop.
f(~alreadyProcessed) = zmed(~alreadyProcessed);

