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1. Introduction 

One promising method of solar power concentration is the heliostat array. A heliostat consists of a large 
mirror with the mechanisms and circuitry necessary to actuate it, such that it reflects sunlight onto a 
given target throughout the day.  A heliostat array is a collection of heliostats that focuses sunlight 
continuously on a central receiver, often called a power tower. Figure 1 shows an example of a heliostat 
array. 

 

 

Figure 1: Sandia National Laboratories National Solar Thermal Test Facility heliostat array. This array 
consists of 222 heliostats and a single 200ft tall power tower.  

 

Optimally concentrating sunlight with heliostats requires that each heliostat mirror is correctly canted 
(positioned) and focused (shaped). In order to minimize facet canting and focal errors, Sandia National 
Labs and New Mexico Tech are developing heliostat optical analysis tools. In many cases these tools 
utilize a camera positioned on top of the power tower (200 feet above ground level). This camera 
position combined with the large heliostat field size places the camera at a total distance of 300-700 
feet away from the heliostat mirror surface being analyzed. Figure 2 displays the camera and heliostat 
positioning.  

 



 

Figure 2: Camera and heliostat positions during optical analysis. 

 

To compensate for the large distance between the heliostat and camera, a long range optical zoom lens 
(80-400 mm focal length) is used when acquiring images and video of heliostat mirrors. This lens allows 
the camera to acquire high resolution images at great distances. However, one major drawback of this 
system is the high sensitivity of the zoom lens and camera to small position disturbances. These 
disturbances include camera and lens position shift due to wind, structural vibrations, and thermally 
induced strain. Although these disturbances are small, they can create large shifts in the cameras field of 
view.  

The optical analysis of heliostats relies heavily upon determining the exact positions of specific features 
in acquired images and video. As a result, any shift in a camera’s field of view will have a negative effect 
on analysis by altering the location of these features within an image. This alteration results in poor 
analysis and incorrect heliostat canting and focusing.  

The following project attempts to implement a software solution to track and correct for shifts in 
camera position. In the project we reviewed and compared literature on multiple methods for motion 
correction. We then implemented one method on sample video that mimics the camera position change 
commonly seen during optical analysis. As a secondary portion of the project, the blur induced by 
camera motion was investigated and corrected for a single frame using methods previously 
demonstrated in the EE 552 course.   

2. Preexisting Methods for Motion Correction 

Our investigation of the preexisting methods for motion correction followed a project paper from a 
Northwestern University digital image processing course [1]. In the paper, Brooks discusses the various 
methods for motion tracking and control. These methods include spacio-temporal approaches such as  

block matching [2], direct optical flow estimation [3], and least mean-square error matrix inversion [4], 
as well as, matching methods including bit-plane matching [5], point-to-line correspondence [6], feature 
tracking [7], pyramidal approaches [8], and block matching [9]. Upon investigating these references we 
decided to pursue a gray-coded bit-plane matching (GSBPM) method [5]. This method requires minimal 
computation and is ideal for quickly determining and correcting motion.  



3. Implementation of GCBPM Method 

In order to implement the selected correction method, we first had to generate a video file that 
accurately mimicked the sort of motion experienced by the camera on top of the power tower. Our 
initial attempt to acquire actual tower top video was unsuccessful due to unusually high winds that 
exceeded the scope of this project. As a result, we instead developed a generic video (acquired in an 
indoor office setting) that had camera motions similar to that induced by average wind speeds and other 
disturbances. Using the webcam also allowed us to utilize a slightly lower image resolution. This smaller 
resolution allowed us to capture a longer uncompressed video segment that we could then attempt to 
process. 

Upon creating the video, development of the bit-plane algorithm began. During development we 
followed the methods presented by Gonzalez [10] and Ko [5]. Initially, we used the dollar bill image 
presented in Figure 3.14 of Gonzalez to ensure our algorithm’s accuracy. Figure 3 displays our 
algorithm’s results for comparison purposes.  

 

Figure 3: Bit-plane sliced of 100 dollar bill image. 

After successful implementation of the initial bit-plane algorithm, we moved towards adapting the 
algorithm for gray-coded bit-plane separation as discussed in Ko’s paper. Equations 1 and 2 were used 
to generate the final gray-coded bit-plane. 

 ft(x,y) = aK-12K-1 + aK-22K-2 + … + a020   (1) 

gK-1 = aK-1 

gk = ak  ak+1, 0 ≤ k ≤ K-2   (2) 

In the Equation 1 ft(x,y) represents the gray level of the tth image frame at coordinates x and y. In 
Equation 2 the gk represents the eight-bit gray code. In both equations ak are the standard binary 
coefficients.    



Our results after applying Equations 1 and 2 to the initial frame of our video segment are shown if Figure 
4. From the results of Figure 4 we chose bit-planes four and five as good candidates for analysis. These 
layers showed a large amount of detail making them ideal for detecting changes in the image. 

 

 

Figure 4: Gray-coded bit-planes of initial video frame. 

After determining an ideal bit-plane we created the appropriate code to calculate the approximate 
motion vector of successive video frames. The code analyzes four small sub-images of the single frame 
bit-plane image. The sub-images of the bit-plane image are shown in Figure 5. 



 

Figure 5: Single bit-plane with highlighted and zoomed sub-images. 

 During analysis, the code uses Equation 3 to find the error function of each sub-image between 
successive frames. In this equation W is the width of the sliding block and p is the range of pixels being 
analyzed. 

(m,n) = 1/(W2) ΣΣgt
k (x,y) gt

k-1(x+m,y+n),   -p ≤ m,n ≤ p    (3)  

 

Once the error function for each sub-image is known, the (m, n) location of the error minimum in each 
error function is found.  Furthermore, the algorithm takes the median value of the four error function 
minimums and uses this value to approximate a global motion vector for the entire image. This process 
is repeated for each pair of successive frames and outputs the motion vector of each frame. Knowing 
these vectors the code can then alter each original video frame to keep the objects of interest in the 
correct centered location.   

In order to speed up the overall processing time of our algorithm we implemented a graphical 
processing unit (GPU). In order to run the code on the GPU we first developed the code in MATLAB to 
run on a computer central processing unit (CPU). Once full operation was verified, we adapted the code 
using the Accelereyes Jacket software program. This allowed us to maintain the general MATLAB code 
structure, but implement a GPU as desired.  

Lastly, we addressed the issue of sharpening a single video frame. Although blurring is not a large issue 
when viewing video clips, there are instances where single frames are captured and observed. In these 
cases, blurring can be a significant problem. To address this problem we applied the Weiner filter code 
developed previously in the course. To correctly adjust the filter for the specific application, input 
constants used to generate an appropriate H(u,v) were determined iteratively by viewing the output 
results until suitable inputs were found.  



4. Results 

The results of the stabilization portion of this project are best showcased in the output video file. Figure 
6 shows three video frames that demonstrate the results shown in the video.  

 

 

Figure 6: Frame 1 of original video (left), frame 80 of original video (center) and frame 80 of corrected 
video (right). 

By looking at a specific feature of Figure 6 we can see the overall correction applied by the stabilization 
algorithm. The corner of the rightmost used sticker in frame 80 of the original video is located at (1492, 
441). The same feature in the corrected version of frame 80 is located at (1060, 214). By comparing 
these positions to the original feature position in frame one at (1032, 197) we compare the relative 
motion of the different video frames. From this comparison we find that frame 80 of the original video 
moved 360 pixels horizontally and 244 pixels vertically. Furthermore, frame 80 of the corrected video 
moved only 28 pixels horizontally and 17 pixels vertically.   

The use of a GPU decreased processing time of the video segment. In this particular case the video 
segment had a resolution of 1600x1200 and GCBPM was performed with a W of 49 and a p value equal 
to 100.  When using a CPU the overall runtime for ninety frames with these settings was 563.64 seconds, 
giving a processing speed of 0.16 frames per second. Using a GPU the overall runtime for ninety frames 
with the same settings was 159.24 seconds, yielding a processing speed of 0.57 frames per second. All 
processing times include the necessary steps of reading and writing video files.    

The sharpening results are shown in Figure 7. Because image sharpening was a secondary result, the 
GPU was not used during execution of the sharpening algorithm.  



 

Figure 7: Original blurred frame (left) and sharpened frame (right). 

5. Conclusions and Future Work 

The methods used in this project were successful in stabilizing a moving video segment that mimics 
video commonly acquired using heliostat optical analysis tools. These results confirm that it is possible 
to implement GCBPM to accurately approximate the motion of successive video frames. Additionally 
GCBPM can be adapted to a GPU, which in this case resulted in observed processing speed increase of 
354%. In addition to stabilization, image processing techniques can be used to sharpen individual image 
frames and improve the clarity of image features.  

With these conclusions established it is now possible to integrate the same stabilization techniques into 
actual heliostat mirror analysis video. In doing so, additional processing improvement steps should be 
considered to increase the overall quality of output video. Some techniques to be considered are motion 
dampening to minimize small motion and further integration of the GPU to allow for efficient processing 
of high resolution video. Furthermore, it is important to note that the quality of stabilization was highly 
dependent upon the size of the sub-image being analyzed. To guarantee the highest stability, different 
sub-image sizes should be utilized until an optimum balance between processing time and stabilization 
quality is found. 
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