
Embedded Controls Final Project
Lucas Uecker

12-5-10

Abstract

This paper outlines a project to correct a gyrocompass against both mechanical noise and the
processive force the gyroscope produces. A gain-scheduled proportional control was used to maintain a
specific angle. The angle of the gyroscope was measured using a potentiometer and a MSP430
microcontroller was used for active control.

Introduction

Gyrocompasses are a effective and accurate method for determining change in orientation with respect
to a reference angle. This occurs to to an effect called procession, which is a force that occurs when a
torque vector is perturbed. The torque vector is defined as the the moment of inertia multiplied by the
angular velocity. The direction of the vector is the right-hand-normal direction to the plane of rotation.

=I (1)

The procession vector is then

dL=−d (2)
or

dL /dt=−d/dt (3)

For example, if one end of a gyroscope were supported and the other allowed to fall, the processive
force L would give equal and opposite force to a gravitational force g:

Figure 1: The processive force is enough to counter gravitational acceleration

If a device such as a flywheel with constant rotation is allowed to move freely, it will maintain the
same angle with respect to it's axis. This acts as a form of compass, with the axis of the gyroscope

pointing in a constant direction with respect to a global frame of reference, despite angular
perturbations in the local frame.

Background

This project involves a flywheel with a motor to maintain it's energy storage and allowed to rotate
horizontally. The angle of the gyroscope is measured using a potentiometer. The voltage on the
potentiometer is measured by the ADC module of a Texas Instruments MSP4302231 microcontroller.
The MSP430 calculates an error based on difference between the measured value and the value desired
and applies PWM and direction data to a motor controller to correct angle.

Compared to a generic control system, the voltage of the potentiometer is the feedback term, the PWM
and direction bits are the control signal and the processive force as well as vibration and system noise
are disturbance signals.

The specific control system is a gain-scheduled proportional control. A PD or PID control system is not
used due to unreliable behavior during testing. The control motor is linked to the gyroscope via a
rubber band and pulley system that does not function in a manner consistent enough to provide accurate
data to a PD system. Instead, the controller uses proportional control, where the control variable is
directly proportional to the error:

C t =a∗E t (4)

Normally, proportional control is not used in practice due to the fact that it generally leads to overshoot
and is only guaranteed mathematically to asymptotically approach a desired variable. In this system,
however, a small range of variables is used instead of a specific variable. Accuracy is slightly
diminished in this scheme, but the range comprises a range of error of about 5 degrees, which is taken
as acceptable. There is also enough friction in the system to reduce the problem of overshoot.

Gain scheduling is a method of changing the control system used depending on the situation the control
system or plant is in. This is used to take advantage of locally linear behavior of control systems
instead of finding a single control system that is globally effective. In this system, if the error is
sufficient, a constant control signal is applied. Once the error is reduced, the system switches to using
the proportional controller.

Figure 1: Error vs. Relative PWM

Figure 1 shows the general scheme used. Beyond a certain error in either direction (20 or 230 in the
graph), the controller give a constant large correction. In the center, a range 10 values is given no
control signal to correct. Between the constant correction and no correction, the linear proportional
control is used.

Note Figure 1 is relative PWM duty cycle. In the physical system, 50% is approximately the minimum
duty cycle to have reliable movement from the control motor. The minimum duty cycle used was
approximately 66%. It was also decided to avoid 100% duty cycle to prevent overheating the motor
controller, so the maximum duty cycle used was approximately 90%. These constraints had the
fortunate effect of causing the ratio of error to duty cycle to be approximately 1. This allowed the
proportional control to be directly determined by the error and the processor spared from some
calculation.

Results

Oscilloscope traces of the system:

Figure 2: The system correcting a 90 degree error (fast time scale)

Figure 3: Another 90 degree correction (fast time scale)

Figure 4: Manual Perturbations of the system (slower time scale)

Figure 5: Closer look at Perturbation Traces

The system corrects the 90 degree error in approximately 500ms with approximately 3% overshoot.

Conclusion

The system generally performed as designed. Adequate control was achieved, though friction and other
non-linearity did degrade performance. The control motor also seems to be asymmetric in performance,
causing the system to work better in one direction than the other.

Appendix A- Program code

#include <io.h> //header files
#include <signal.h>

#define LED0 0x01 //global constants
#define LED1 0x40
#define BUTTON 0x08
#define TXD 0x02
#define RXD 0x04

static void __inline__ delay(register unsigned int n);

void main(void){
WDTCTL = WDTPW + WDTHOLD; // Stop WDT
ADC10CTL0 = ADC10SHT_2 + ADC10ON + ADC10IE; // ADC10ON, interrupt enabled
ADC10CTL1 = INCH_3; // input the ADC at P1.3
ADC10AE0 |= BUTTON; // PA.3 ADC option select

�

P1DIR |= (LED1 + LED0 + TXD + RXD); // Set P1.0-2 to output direction
P1SEL |= LED1; // P1.3 to TA0.1
P1OUT |= (LED0 + TXD + RXD); //assigning pins to port 1

CCR0 = 1000-1; // PWM Period
CCTL1 = OUTMOD_7; // CCR1 reset/set
TACTL = TASSEL_2 + MC_1; // SMCLK, up mode

�

P1OUT |= 0x05; //initializing output to binary 101

�

while(1){
ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
__bis_SR_register(CPUOFF + GIE); // LPM0, ADC10_ISR will force exit

�

if (ADC10MEM < 0x1F0){
if(ADC10MEM > 0x100){

CCR1 = (0x1EE - ADC10MEM) + 0x29A; //proportional control
P1OUT = ~0x05; // Toggle control bits

}else{
CCR1 = 900; //constant control
P1OUT = ~0x05;

}
}if(ADC10MEM > 0x1FF){

if(ADC10MEM < 0x2EF){

CCR1 = (ADC10MEM - 0x1FF) + 0x29A; //proportional control
P1OUT = 0x05; // Set control bits

}else{
CCR1 = 900; //constant control
P1OUT = 0x05;

}
}else{

CCR1 = 100; // dead zone
}
delay(10); //delay

}
}

�

// ADC10 interrupt service routine
//#pragma vector=ADC10_VECTOR
interrupt(ADC10_VECTOR) ADC10_ISR(void){

__bic_SR_register_on_exit(CPUOFF); // Clear CPUOFF bit from 0(SR)
}

// Delay Routine from mspgcc help file
static void __inline__ delay(register unsigned int n){

__asm__ __volatile__ (
"1: \n"
" dec %[n] \n"
" jne 1b \n"
: [n] "+r"(n));

}

