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1.  INTRODUCTION 

This paper describes my final controls project for EE554. The project is a DC motor control for a 

flexible shaft system. The purpose of this system is to create a controller in LabVIEW which has 

the ability to control the speed of the motor which is driving two masses connected with a 

flexible shaft. The principle of a control system is that you monitor the output of a system and 

feedback the error signal in order to adjust the input signal with the hopes of eliminating the 

error. 

The type of control system used is Proportional-Integral (PI). The basic algorithm for PI control 

is:  

 

 

This equation consists of 2 parts, the proportional section and the integral section. . The 

proportional gain term, ,  adjusts the output based on a proportion of the current error. The 

second gain term, , is the integral gain. This term is multiplied by the accumulated 

instantaneous error of the system. This term speeds up the movement towards the desired point 

and eliminates the steady-state error. By adjusting the values of the gain terms you can tune the 

response of the system to perform optimally.  
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2. PHYSICAL SETUP 

The physical setup of my setup can be seen below in figure 1. The design consists of a DC motor 

which drives a shaft using a gear train.  This gear train is designed to transfer the rotational 

torque from the motor to the flexible shaft being controlled. The amount of torque transfer 

through the gear train can be determined using the gear ratio, N (2.1). By determining the 

product of the gear ratio and the torque from the motor you get the resulting torque after the gear 

train.  

 (2.1) 

The shaft from the gear train is connected to the first mass being monitored. This element is a 

steel gear with an outside diameter of 2 inches. The gear consists of 17 spokes which will be 

measured by the Hall Effect sensor mounted on the frame to create pulses which are used for 

velocity calculations. The shafts and gear train connections from the motor to this first mass are 

considered to be rigid. The first mass is then connected to an identical mass through a 4 inch 

flexible rubber shaft. This second mass also is monitored by a Hall Effect sensor to determine 

rotational velocity.  This setup allows us to use a DC motor to drive a shaft which includes two 

masses connected by a flexible shaft. The rotation of the masses is able to be monitored and the 

RPM of each can be determined. The next section in the paper discusses the electrical setup for 

the experiment. 



7-Dec-10  Andrew Murray 

 5  

 

Figure 1: Setup of System 

 

3. ELECTRICAL SETUP 

In order to control the DC motor the Hall Effect sensors the system must be wired to the NI Elvis 

Prototyping Board. The NI Elvis is a prototyping board which is able to be interfaced with 

LabVIEW allowing it to be controlled with Virtual Instruments created in this platform. The 

wiring diagram for how this is done can be seen in Figure 2. As this Figure shows the DC motor 

is wired to the Supply + and – on the Elvis. This allows for the motor to be controlled using a 

variable power supply integrated into the NI Elvis system from LabVIEW.  

 

 

 

 

 



7-Dec-10  Andrew Murray 

 6  

 

Figure 2: Wiring Diagram 

The other electrical devices which need to be wired are the Hall Effect sensors. These sensors 

Have three external pins which need to be properly connected. These are the 5V power, ground 

and supply. Figure 2 shoes how these sensors were integrated into the circuit. This integration 

requires the use of pull up resistors to be implemented in order for the signal to properly work. 

The pulses emitted from the sensors are then connected to the 2 counters provided on the NI 

Elvis. These signals are used to determine the speed at which each mass is rotating in the system. 

This process is done in LabVIEW and is described in the next section. 



7-Dec-10  Andrew Murray 

 7  

4. LABVIEW 

All of the programming for this project was done in NI LabVIEW. LabVIEW and the Elvis are 

made to easily interface with each other. This section will give a quick overview at the main 

systems of the program and explain briefly how each one works. The graphical user interface 

(GUI) is the portion of the LabVIEW program which allows the user to control the system. This 

can be seen in Figure 3. There are a few main sections in the GUI designed for this system. The 

upper left portion of the GUI consists of all the controller information. First is the text box which 

allows the user to determine the desired RPMs for the system.  Second, the user is able to turn 

the controller on and off so that the system can be ran open or closed loop. There are also a few 

boxes which allow the user to control the gain values for the controller, this will be discussed 

more in the Control section of the paper. The user is also able to control which mass to monitor 

for control. 

The second part of the LabVIEW GUI is the indicator section. This consists of two RPM gauges 

which allow the user to see the current speed at each mass. There are also two waveform graphs. 

The first plots the speed of each mass over time which allows the response of the system to be 

monitored. The second graph displays the voltage being supplied to the DC motor over time. 

There is also an option to save this data so that it can by taken and analyzed in another program 

such as MATLAB. 
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Figure 3: LabVIEW Graphical User Interface 

The LabVIEW GUI is what the user interacts with in order to control the system as it is running. 

However, most of the LabVIEW programming is done in the Block Diagrams. The Block 

Diagram is where all the registers and subsystems are setup along with the actual programming 

of the system. The block diagram is setup to be running a case structure with 3 different 

substructures. Each one of these runs simultaneously and can be seen in Figures 4, 5 and 6.  
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Figure 4: Block Diagram 1 

Figure 4 shows the first structure which is responsible for setup of the input captures as well as 

the Variable Power Supply (VPS). The input capture counter is setup to count the pulses from 

each of the Hall Effect sensors. There is a sub vi in LabVIEW called the CI Angular Encoder. 

This is programmed to convert the amount of pulses into the angle of rotation based on the 

amount of pulses per revolution. These angles are then fed through to the second structure to be 

analyzed. The VPS is also configured so that is can be easily controlled. The second block 

diagram structure is shown in Figure 5. 

This structure consists of most of the actual operations in the program. The top portion is a loop 

which calculates the actual RPMs of each mass based on the angles of rotation determined by the 

counter. The system is set up to sample the RPMs at a rate of 100 Hz. This is about the fastest 

sampling interval which can be used because it is limited by the speed of Windows.  This 

sampling rate allows for rotational velocities as slow as 300 RPMs to be accurately measured. If 
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the motor is running any slower than this the pulses may not be captured within the sampling 

interval and accurate speed determination is unachievable. 

The second portion of this structure is the actual control of the motor. The program is able to be 

ran open or closed loop. When the controller is off the program simply provides a constant 

voltage to the motor based on what the desired RPM is. There is no feedback. However, when 

the control is turned on the feedback is allowed. The monitored RPMs are compared to the 

desired RPMS and an error is determined. This error is fed into the PID control sub VI. This sub 

VI then uses the PID constants supplied to it from the GUI to determine the voltage which needs 

to be supplied to the motor to reach the correct desired speed. This is how the controller is 

implemented in the system. 

The final structure in the block diagram is shown in Figure 6. The purpose of this structure is to 

check whether or not the data needs be be saved. If the user has toggled the save data button on 

the GUI then the collected data is saved at the path specified. This allows the data to be collected 

and analyzed in separate software. 
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Figure 5: Block Diagram 2 
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Figure 6: Block Diagram 3 

5. MODELLING 

 

Figure 7: electrical circuit and free body diagram 
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Figure 8:Schematic of the major mechanical components in the motion control plant 

 

After the whole system was setup up it was then necessary to model the system. The free body 

diagram of the sytems as well as the schematics of the mechanical system is shown in Figures 7 

and 8. The motor torque is related to the armature current, I, and the armature constant, . 

This can be seen in equation 5.1.  Also the back emf, e, is related to the rotational velocity, , 

and the motor constant, (5.2). By using these free body diagrams as well as Kickoff’s 

Voltage and Current Laws along with Newton’s laws it is possible to come up with a system of 

equations to describe the system. 

 

 (5.1) 
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(5.2) 

The state variables for the system are shown in Figure 8. These variables include position and 

velocity of both of the masses as well as the motor current. The equations which describe the 

system are shown by (5.3) , (5.4) and (5.5).  The rotational moments of inertia, J, for the masses  

are calculated by (5.6) and (5.7).  These values are then substituted back into the previous 

equations. 

 

Figure 9: state variables and derivatives 

 

(5.3) 

 

(5.4) 

 

(5.5) 
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(5.6) 

(5.7) 

Once the equations which describe the system are determined it is necessary to put them into the 

state-space form which can be seen in Figure 10. The output was chosen to be the rotational 

velocities of the masses and the current. From the state-space equation it is possible to model the 

system in MATLAB.  The MATLAB code is provided in the appendix of the report. The code 

calculates the step response of the open loop system.  From there it creates a closed loop PI 

control. This is useful because the controller can be tuned in the model using the Ziegler-Nichols 

method. This method consists of first setting all the control gains to zero and slowly increasing 

the proportional gain. This is done until the step response begins to oscillate. Once this has been 

achieved the proportional gain is turned down a small amount and the integral gain is introduced 

until the steady-state error is eliminated. Since I am only using PI control this is all that is 

necessary to tune the system. Using this method the value for the proportional gain is .5 and the 

integral gain is .2. These will be the values implemented into LabVIEW for control of the 

system. The step response of the open loop and closed loop transfer functions are plotted by 

MATLAB as well.  The open loop and closed loop step response are shown in Figures 11 and 12, 

respectively. These plots can be seen in the Results section so they can be easily compared to the 

actual system responses. 
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Figure 10: state-space form of equations 

 

 

 

6. TESTING 

The first test performed was in order to help characterize the motor and develop a 

relationship between rotational velocity and voltage. The LabVIEW program discussed 

earlier for the control of the motor was used for this section as well. However, the variable 

voltage supply was switched off which allowed the manual voltage control to be used. The 

voltage to RPM ratio was determined by manually setting the voltage to different values and 

recording the rotational speed determined by LabVIEW. After 15 data points were taken the 

values were plotted against each other in Matlab and the line of best fit was added, Figure 11. 
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The equation of this line was also determined. This equation allows the user to determine the 

voltage which should be supplied to the motor in order to achieve the specified RPM. Once 

this equation was determined it was implemented in the open loop control system so that the 

system would know the necessary voltage to reach the desired RPM.             

 

Figure 11: Plot of RPMs vs Voltage 

The second test ran was the open loop step response which allowed the time constant to be 

determined. The LabVIEW program was ran in open loop mode and was subjected to a step 

voltage input. The response of the data can be seen in Figure 12. The time constant is determined 

by finding the location on the graph where the amplitude is 63.2% the final value. The time at 

which this takes place is the time constant. The time constant for this system as marked on the 

plot is 3.03 seconds. 

After the open loop step response test was ran the closed loop response test was done. For this 

test the PI controller was turned on and the gains were set to those determined in modeling. The 

response is shown in Figure 13. 
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The final test was to see how well the controller responded to disturbances. In order to create a 

disturbance, the edge of  an index card was placed in the path of the gears on the shaft controlled 

by the motor. This creates an added force from the outside world which slows done the system. 

The data from this test was collected and plotted in Figure ?. In this figure the supplied voltage is 

plotted against time alongside the RPM on the mass 1. This allows the voltage applied to be 

compared to the actual speed of the system for better visualization of the controller’s 

performance. 

 

7. RESULTS 

The first result is the step response from the open loop model which is shown in Figure 12. The 

top figure shows the response of the first mass of the system and the bottom plot shows the 

response of mass 2. This figure can be compared to the step response of the actual open loop 

system shown in Figure 13. The response of the model seems to be a bit quicker at first than the 

actual response of the system. This is shown by the steeper slope observed in the model 

response. However, both the model and actual system take about 5 seconds to reach the final 

velocity. 
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Figure 12: Model of Step Response 
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Figure 13: Step Response 

The next results presented are the step responses for the closed loop system with PI control. The 

response of the model is shown in Figure 14 and the response of the system is shown in Figure 

15. The two responses are fairly similar to each other. The settling time predicted by the model is 
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a longer than the actual settling time observed. The other difference between the plots is that the 

actual overshot of the system is a little more than predicted by the model.  

 

Figure 14: Modeled Step Response with PI control 

 

 

3 4 5 6 7 8 9 10 11 12
0

200

400

600

800

1000

1200

1400

time (s)

R
P

M
s

Step Response with PI controller

 

Figure 15: Step Response with Control 
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The final result of this paper is the response of the system to a disturbance. The data from this 

test is shown in Figure 16. There are several key features to notice in these plots. The disturbance 

was first introduced at around 3.5 seconds and is indicated by the sharp rise in the voltage graph. 

This rise shows the controller adjusting the supplied voltage to account for the disturbance. 

There are some modulations within the speed plot but it stays fairly constant as the disturbance 

force acts upon the system. When a disturbance is first introduced the speed slows down a bit 

before the controller begins to compensate. As the controller compensates it also introduces 

some overshoot into the response before it settles which is also observed in the graph. The 

disturbance is greatest from 13-15 seconds. The controller is almost completely saturating at the 

12 volts limit at this time trying to keep the velocity constant. At 15 seconds the disturbance was 

removed completely. This causes the controller to abruptly decrease the voltage which is easily 

noticed in the plot and gives a little bit of undershoot. 
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Figure 12: Response to Disturbance. Top graph shows voltage and bottom graph shows RPMs 

 

8. CONCLUSIONS 

This paper described the method for developing a control system for a DC motor driving masses 

connected by a flexible shaft. The first section described the physical setup of the system. Then 

the LabVIEW program which was written to control the setup was explained. Once the system 

setup was presented the modeling was discussed. The model was implemented in MATLAB and 

the open loop step response was plotted. Then a PI control was added to the system to and the 

gain values were tuned. This was done using the Ziegler-Nichols technique. These values were 
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implemented in LabVIEW and the actual system was ran and recorded. After this was done the 

model was compared to the actual data. This showed that the model fairly resembled the actual 

system although there were errors. The gain values determined in the model did an alright job 

controlling the system but the response could have been improved. One major drawback of the 

system was the fact LabVIEW was limited by the speed of Windows. 

 

9. APPENDIX A: MATLAB CODE 

clc; clear;%state-space 

Jm=.059; 

m=454; 

r=.0254; 

J=(m*(r^2))/2; 

J2=(m*(r^2))/2; 

N1=18; 

N2=20; 

Gr=N2/N1; 

Km=8.64; 

Kb=.905 

bm=.001; 

bf=1; 

kf=.8; 

Lm=0.01; 

Rm=30; 

J1=Jm+(J/(Gr^2)); 

A=[0 1 0 0 0; -kf/J1 -(bf+bm)/J1 kf/J1 bf/J1 Km/J1; 0 0 0 1 0; kf/J2 bf/J2 -kf/J2 -bf/J2 0; 0 0 0 -Kb*Gr/Lm -Rm/Lm]; 

B=[0 0 0 0 1/Lm]; 

B=B'; 

C=[0 1 0 0 0; 0 0 0 1 0; 0 0 0 0 1]; 

D=[0 0 0]; 

D=D'; 

statespace=ss(A,B,C,D); 

 %step(statespace) 

[num,den]=ss2tf(A,B,C,D); 

num = [0 num(1,3) num(1,4) num(1,5) 0 

            0 0 num(2,4)  num(2,5) 0 

            num(3,2) num(3,3) num(3,4) num(3,5) 0]; 

  

 figure(1) 

 step(num(1:2,:),den) 

 num1=num(1,:); 

Kp=.2; 

Ki=.5; 

Kd=0; 

numc=[Kd Kp Ki]; 

denc=[1 0]; 

[numCL, denCL]=cloop(conv(num1,numc),conv(den,denc)); 

figure(2) 

step(numCL, denCL) 
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