
Design Features

The specific hardware requirements for this project were created in Verilog. These

custom peripherals connected to the Nios II through a number of PIO ports. The

peripherals were controlled by reading or writing specific memory addresses,

similar to almost any other microcontroller. Writing the peripherals in Verilog

allowed us to optimize them for the project.

Reports from other groups suggested that the motor encoder signal was noisy. To

reduce these effects, we designed the encoder input to reject noise. This was done

by enforcing a minimum time between pulses. The encoder input module outputs the

period time directly. This allows the rpm to be read directly, without interrupts

or calculating a difference.

The motor current is controlled with a single transistor. Initially we thought this

was undesirable because there is a substantial difference in the acceleration and

deceleration rates of the motor. This could be fixed in the case of a DC motor.

Operating a heater would have a similar imbalance so the single transistor was

decided to be a realistic option.

Step by step we show what the program does

test is the nios ii processor and PIO ports

the input capture module for reading motor encoder

reset counter when period time is reached

otherwise, increment counter

begin pwm generation

register comparation value to prevent noise

end pwm generation

We comment the code for a better explanation about what we did, so please look at

the comments

/*

 * Nios II PID motor controller

 * Verilog code for input capture

 *

 * EE 554 midterm project

 * James Smith, Elias Badillo

 *

 */

module input_capture(clk, enc, deadtime , count , capture);

input clk; // "clk" is the clock

input enc; // encoder signal

input [31:0] deadtime; // expect enc to remain high for deadtime number cof clocks

output [31:0] count; // count is the counter value, made available to the nios ii

processor

output [31:0] capture;// capture is the time in clocks between rising edges of enc

reg [31:0] countreg; //

reg [31:0] capreg; // stores counter value when enc has a rising edge

reg edgedetect;

// (enc | (countreg[31:0]<deadtime[31:0]))

// is true starting with the rising edge of enc

// stays true until deadtime is over or enc goes low

// This signal is a "filtered" version of enc

// it is forced high to avoid rising edges when deadtime is over

// edgedetect is the previous value of above

always @(posedge clk) // enc now high but was previously low

if((enc | (countreg[31:0]<deadtime[31:0])) & !edgedetect)

begin // ran at rising edge of enc

 capreg=countreg; // record timer value

 countreg=0; // reset counter

 edgedetect=(enc | (countreg[31:0]<deadtime[31:0])); // save enc value for

use at next clock

end

else

begin // ran when no rising edge on enc

 countreg=countreg+1; // increment counter

 edgedetect=(enc | (countreg[31:0]<deadtime[31:0]));// save enc value for use

at next clock

end

// output signals

assign capture[31:0]=capreg[31:0];

assign count[31:0]=countreg[31:0];

endmodule

We designed the PID function with the equations (p.154 textbook):

and

Taking some values from the system and seeing the next graphic

tau = 11.5000

kp = 0.6900

cb = 1.5525 -2.0700 0.6900

ca =1 -1 0

mdelay = 3

mtau = 12.5000

 Step response without PID control

 Step response using PID control

 System response

