
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 10, OCTOBER 2010 3297

Design of an Embedded Control System
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Abstract—This paper presents a prototype laboratory experi-
ment to be integrated in the education of embedded control system
engineers. The experiment, a real-time control of a dynamical
system, is designed to drive students to a deeper understanding
and integration of the diverse theoretical concepts that often come
from different disciplines such as real-time systems and control
systems. Rather than proposing the experiment for a particular
course within an embedded system engineering curriculum, this
paper describes how the experiment can be tailored to the needs
and diverse background of both undergraduate and graduate
students education.

Index Terms—Control systems, embedded system education,
laboratory experiment, real-time systems.

I. INTRODUCTION

THE economic importance of embedded systems has
grown exponentially as electronic components are in

everyday-use devices. Hence, embedded system education is
a strategic asset, and university curricula are being adapted
accordingly to cover this domain [1]. Embedded system courses
are being integrated into existing science and engineering
curricula [2], [3], but also, specific curricula have been de-
veloped to integrate the broad set of concepts into a course
sequence [4]–[7]. In addition, modern teaching practices, such
as problem-based learning [8], international project collabora-
tion [9], cooperative learning [10], online competitions [11],
educational games [12], or remote laboratories [13], have also
been applied to the embedded system education. To provide
students with in-depth understanding across all the areas and
disciplines involved in embedded systems is a difficult task.
Hence, laboratory activities are crucial to consolidate the di-
verse theoretical material [14].

Since many embedded systems are control systems [15]
and considering that there is an increasing trend to adopt
real-time technology for the embedded computing platform
[16], laboratory experiments, including topics of real-time and
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control systems, are becoming more and more important for
the education of embedded system engineers. The traditional
teaching approach to real-time system and to control system
courses can be quite math intensive and abstract, thus failing to
introduce students to the realities of embedded control system
implementation. Moreover, the natural interaction and integra-
tion between these two disciplines is often neglected due to
the traditional compartmentalized nature of science and engi-
neering education. Since control systems are real-time systems,
control engineers must have an understanding of computers and
real-time systems, while computer engineers must understand
control theory.

To overcome such limitations, this paper presents a labora-
tory experiment to be integrated in the education of embed-
ded control system engineers that flexibly combines two main
disciplines: real-time systems and control systems. The flexi-
bility is achieved by describing a set of problems/observations
that provide the spectrum of possible choices that instructors/
students have and the work that has to be done to complete
the experiment. This permits elaborating diverse assignments
for the laboratory experiment with open problems, rather than
providing tight guidelines, while providing the tools for assess-
ing whether the students’ design and implementation choices
were correct. Finally, through the experiment, it is shown that
the combination of both disciplines does not rise conflicts. It
rather provides complementary approaches/views that help in
the multidisciplinary learning process required in the embedded
system education.

The experiment main activity includes the implementation
of a real-time control application, consisting in controlling
a physical plant by a controller implemented as a software
task executing on top of a real-time operating system (RTOS).
Rather than proposing an experiment for a particular course
within an embedded system engineering curriculum, this paper
describes how the experiment can be tailored to the needs
of both undergraduate and graduate students education and
to the diverse background of the target audience. A tentative
laboratory program covering the different stages required to
carry out the experiment is presented, and its integration into
a master-level student course is also reported.

The rest of this paper is organized as follows. Section II
sets the objectives, competence, and learning outcomes for the
designed experiment. Section III discusses the selection of the
controlled plant and the processing platform/RTOS. Section IV
introduces the set of problems/observations for carrying out the
activity. Section V presents an outline of the experiment and its
adaptation to a course. Section VI concludes this paper.

0278-0046/$26.00 © 2010 IEEE
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TABLE I
REQUIRED SKILLS

TABLE II
LEARNING OUTCOMES

II. OBJECTIVES, COMPETENCE,
AND LEARNING OUTCOMES

The experiment objectives are twofold. First, the positive
benefits of experimental learning are well known in educational
and professional activities. Students’ confidence and enthusi-
asm in experiments grow as they practice in problem solving,
teamwork, design skills, etc. Second and more specifically,
experiments should educate students in embedded control sys-
tems, providing additional knowledge that they cannot acquire
from theory.

Looking at the European Credit Transfer System, program
objectives are preferably specified in terms of the learning out-
comes and competence to be acquired. Although the proposed
experiment is neither tailored to a specific program nor to any
specific level of study (undergraduate and graduate), the main
skills to be acquired by students are listed in Table I. Skills 1
and 2 relate to technical aspects and theoretical knowledge on
embedded control systems; skills 3 and 4 relate to practical
issues and experimental learning, whereas skill 5 refers to
sustainability issues. The multidisciplinary nature of embedded
systems requires more background and transversal knowledge
in different fields, combined with the capability of integrating
different skills for a system-wide objective. The learning out-
comes are more specific because they state what is expected
from a student as a result of the learning process.

The learning outcomes are listed in Table II. The first three
outcomes are related to understanding embedded control sys-
tems, from a technical point of view, taking into account the
multidisciplinary nature of the field. In this process, it is also
crucial for students to be able to read, understand, and use
existing documentation, like datasheets, application program-
ming interface (API) reference manuals, etc. Outcomes 4–6
are related to implementation issues, which are essential for
reproducing an experiment. Finally, the evaluation of sys-
tem performance is crucial to assess if the specifications
are met.

The required background for students to carry out the ex-
periments is a basic knowledge on control system theory and
real-time programming using an operating system.

Fig. 1. Plant and control setup. (a) RCRC circuit. (b) Control setup.

III. SELECTION OF THE CONTROLLED PLANT AND

PROCESSING PLATFORM

The controlled plant and processing platform (hardware and
RTOS) have been carefully selected to have a friendly, flexible,
and powerful experimental setup. Both must be simple to
avoid discouraging those students with strong control system
background but weak real-time system background when facing
the programming part or vice versa to avoid discouraging those
students with strong real-time system background but weak
control system background when facing the controller design
stage.

A. Plant

Many standard basic and advanced controller design methods
rely on the accuracy of the plant mathematical model. The more
accurate the model is, the more realistic the simulations are, and
the better the observation of the effects of the controller on the
plant is. Hence, the plant was selected among those for which
an accurate mathematical model could easily be derived.

Plants such as an inverted pendulum or a direct current motor
are the de facto plants for benchmark problems in control
engineering [17]. However, their modeling is not trivial, and
the resulting model is often not accurate. This leads to a first
controller design that has to be adjusted by “engineering expe-
rience,” thus requiring knowledge that is difficult to formalize
and transmit to the students. To avoid such a kind of drawbacks,
a simple electronic circuit in the form of RCRC [Fig. 1(a)]
was selected. The simplicity of its components and their simple
and intuitive physical behavior have been the main reasons for
its selection. Note however that experiments using other plants
can be complementary to the approach presented here, e.g.,
[15] and [18]–[20]. Indeed, Lim [19] also proposes electronic
circuits. However, they are slightly more sophisticated because
they include operational amplifiers. Although richer dynamics
can be achieved, the intuitive behavior and, thus, the modeling
of operational amplifiers are not straightforward.

The selection of an electronic circuit as a plant has also
another important advantage: Depending on the specific circuit,
it can be directly plugged into a microcontroller without using
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intermediate electronic components, as shown in Fig. 1(b),
where the zero-order hold (zoh) box represents the actu-
ator and the box above represents the sampler, i.e., the
transistor–transistor logic level signals provided by the micro-
controller can be enough to carry out the control. Note that this
is not the case, for example, for many mechanical systems. Such
a simplification in terms of hardware reduces the modeling
effort to study the plant, and no models for actuators or sensors
are required. Additional benefits of these types of plants are
that systems can be easily built, are cheap, have light weight,
and can be easily transported and powered.

The control objective would be to have the circuit output
voltage Vout (controlled variable) track a reference signal or
settle to a constant value while meeting, for example, the given
transient response specifications, which mandates using track-
ing structures. The control will be achieved by sampling Vout,
executing the control algorithm, and applying the calculated
control signal to the circuit via varying the circuit input voltage
Vin (manipulated variable). Disturbances can be injected by a
variable load voltage placed in parallel to the output voltage.

B. Processing Platform

The processing platform consists of the hardware platform
and the RTOS. As a hardware platform, a microcontroller-
based architecture was selected because embedded systems
are typically implemented using this type of hardware. Note,
however, that too small microcontrollers may not be powerful
enough for running an RTOS, as discussed in [22]. Among the
several possibilities available on the market [23], it was decided
to adopt the Flex board [24].

The Flex board (in its full version) represents a good com-
promise between cost, processing power, and programming
flexibility. It was produced as a development board for building
and testing real-time applications using standard components
and open-source software. The board includes a Microchip
dsPIC digital signal microcontroller dsPIC33FJ256MC710, a
socket for the 100-pin plug-in module, an in-circuit debugger
(ICD2) programmer connector, a Universal Serial Bus con-
nector for direct programming, power supply connectors, a
set of LEDs for monitoring the board, an onboard Microchip
PIC18F2550 microcontroller for integrated programming, and
a set of connectors for daughterboard piggybacking.

The board has several key benefits that make it suitable to be
used for educational purposes. First, it has a robust electronic
design, which is an important feature when it is employed by
nonskilled users. Second, it has a modular architecture, which
allows users to easily develop homemade daughterboards using
standard components. A set of daughterboards can be added
to the Flex board for easy development, such as a multibus
board equipped with a controller area network (CAN), Ethernet,
I2C (Inter-Integrated Circuit), and other communication pro-
tocols. On the one hand, the availability of CAN or Ethernet
permits building and experimenting with networked control
applications. On the other hand, the available networks can be
used for debugging purposes or for extracting data from the
board, which is a difficult task when dealing with embedded
systems.

As far as the real-time kernel is concerned, different possibil-
ities were considered. First, many well-known RTOSs, such as
real-time Linux [25], target processors that may be too powerful
for embedded applications, but more importantly, their internal
structure is often too complex for those students with a low
profile in (real-time) operating systems. Hence, it looks more
desirable to work with small real-time kernels (e.g., [26]–[31]
for small real-time kernels targeting small architectures) whose
internals are accessible and easy to understand and modify,
in order to tailor them to the specific application needs. On
the other hand, from a user point of view, programming and
configuring the kernel (including creating tasks, assigning pri-
orities/periods/deadlines, and setting the scheduling policy)
should be friendly enough to attract nonskilled programmers.

From the considerations mentioned previously, an Erika En-
terprise real-time kernel [24] was selected. Erika provides full
support to the Flex board in terms of drivers, libraries, program-
ming facilities, and sample applications. The kernel, available
under the General Public License and OSEK (Open Systems
and their Interfaces for the Electronics in Motor Vehicles [32])
compliant, is an RTOS for small microcontrollers based on an
API similar to those proposed by the OSEK consortium. The
kernel gives support for preemptive and nonpreemptive mul-
titasking and implements several scheduling algorithms [33].
The API provides support for tasks, events, alarms, resources,
application modes, semaphores, and error handling. All these
features permit enforcing real-time constraints to application
tasks to show students the effects of sampling periods, delays,
and jitter on control performance.

The development environment for Erika Enterprise is based
on cross compilation, avoiding typical student misconceptions
when the development platform and the target share the same
hardware. A tool, named RT-Druid [24] (based on Eclipse [34]),
can be used as a default development platform to program in
C, with support from Microchip for the compiler and for the
programming development kit. The latter is important because
Microchip Web pages [35] are always a good place to share
experiment experiences and code: a good place for instructors
and students to visit. RT-Druid implements an OSEK Imple-
mentation Language (OIL) compiler, which is able to generate
the kernel configuration from an OIL specification. Apart from
programming in C, the Flex board can also be programmed
automatically using the Scilab/Scicos [36] code generator (sim-
ilar to what can be done with MATLAB/Simulink [37] and its
Real-Time Workshop, as used, for example, in [38] for rapid
control prototyping). This is an important benefit for nonskilled
C programmers.

From an education point of view, it is also important to note
that there is a possibility to build a community around this
processing platform to create a repository of control software
for education. In fact, a set of application notes that describe a
set of control experiments (inverted pendulum, ball and plate,
etc.) developed with Erika on Flex can be found in [24].

Finally, it must be stressed that the price of the Flex board lies
in the lower bound of evaluation board prices and that the Erika
kernel and the associated development tools are open source,
available for free, or available for free in student edition format.
Hence, it is an economically attractive option.
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IV. EXAMPLE OF THE LABORATORY EXPERIMENT

This section presents some of the activities in the form of
problems and solutions (and observations) required to carry out
the laboratory experience, which are later ordered in the work
plan. The emphasis is in the control analysis and design part.

A. Problem 1. Plant Modeling

If qi represents the charge on capacitor Ci, the differential
equations of the circuit, in terms of the currents q̇i at each Ri,
are given by

q̇1R1 + (q1 − q2)
1
C1

= Vin

q̇2R2 + (q2 − q1)
1
C1

+ q2
1
C2

= 0

q2
1
C2

= Vout. (1)

For example, using state-space formalism, a state-space form
is given by

ẋ(t) =
[

0 1
−1

R1R2C1C2
−R1C1+R2C2+R1C2

R1R2C1C2

]
x(t)

+
[

0
1

R1R2C1C2

]
u(t)

y(t) = [ 1 0 ]x(t) (2)

where u(t) is the control signal, y(t) is the plant output, and
x(t) = [x1 x2 ] is the state vector, where x1 corresponds to
the output voltage Vout and x2 is q̇2/C2.

Observation 1: The modeling of the plant could have been
also done in terms of a transfer function (see [39] for the
analysis). Even obtaining the differential equations is a good
exercise. Adopting the state-space formalism may add another
benefit if using (2). Since only the output voltage x1 can be
physically measured, the control algorithm requires the use of
observers for predicting x2. This opens the door to experiment-
ing with several types of observers, and the implementation of
the controller has to include them. Furthermore, the selection
of the state variables is arbitrary, and therefore, students have
to take design decisions. For example, the voltages in both
capacitors could also have been chosen as state variables. In any
case, if possible, it is interesting to choose the state variables
in such a way that the controlled variable is directly available
through the output matrix in order to minimize computations in
the microcontroller.

B. Problem 2. Electronic Components

The selection of the electronic components is very impor-
tant for several reasons. The output impedance must be low
enough to properly connect the circuit to the analog-to-digital
converter (ADC) or to some external instrumentation, such
as an oscilloscope. For example, given the initial components
R1 = R2 = 1 kΩ and C1 = C2 = 33 μF, a manageable circuit

impedance is obtained. With these components, the state-space
model becomes

ẋ(t) =
[

0 1
−976.56 −93.75

]
x(t) +

[
0

976.56

]
u(t)

y(t) = [ 1 0 ]x(t). (3)

Observation 2: Students can be given other values. For
example, with R1 = R2 = 330 kΩ and C1 = C2 = 100 nF, it is
easy to see that the equivalent output impedance is too high for
the ADC. To derive such a conclusion, students have to consult
the dsPIC datasheet.

C. Problem 3. Open-Loop Simulation

Open-loop dynamics can be observed by injecting reference
signals to the circuit via its input Vin. For example, by injecting
a square wave that oscillates between 1 and 2.5 V at 1 Hz, the
obtained dynamics are shown in Fig. 2(a). The voltage output
Vout (solid curve) slowly tracks the reference (dashed curve).

Observation 3: The electronic components determine the
circuit open-loop dynamics. Students must be aware of this by
playing with different electronic components. In addition, sim-
ulation can be done by standard software packages used in con-
trol engineering (e.g., MATLAB/Simulink and Scilab/Scicos)
or by programming the response in C or even using a spread-
sheet application.

D. Problem 4. Controller Design: Sampling Period and
Performance Specifications

For the chosen plant, there can be different control goals.
A possibility can be to modify the RCRC transient response
by accelerating it or by arbitrarily achieving a given overshoot.
In any case, the selection of the sampling period and the con-
troller itself have a strong impact on the control performance.
Furthermore, they have to be selected and designed taking
into account the processing platform. If avoiding intermediate
electronics between the plant and dsPIC is the assumption, the
control signal (Vin) can be generated using pulsewidth modu-
lation [(PWM); by adjusting the duty cycle], and the controlled
variable (Vout) can be obtained through the ADC. Therefore,
the reference, the sampling period, and the controller must be
chosen/designed so that the voltage levels of the control signal
and the generated peak current levels lie within the hardware
limitations.

Given the previous square reference signal, through an itera-
tive design stage, and according to standard rules of thumb, two
state feedback controllers can be designed: one that accelerates
the response, named fast controller, and another that produces
overshoot, named overshoot controller. For the fast controller,
the period is set to h = 0.01 s, and the discrete state feedback
controller is designed to place the continuous closed-loop poles
at p1,2 = −30 (note that the open-loop system has poles at
−12 and −81 approximately). The overshoot controller has
a sampling period of h = 0.1 s, and the controller places the
closed-loop poles at p1,2 = −10 ± 20i.
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Fig. 2. Simulated RCRC responses. (a) Open-loop response. (b) Faster
closed-loop response. (c) Overshoot closed-loop response.

It is worth noting that, using only standard rules of thumb for
selecting sampling periods [39], both controllers should have a
slightly shorter sampling period. The fast controller should be
given a period of h = 0.007 s and the overshoot controller a
period of h = 0.03 s. However, since longer sampling periods
result in lower controller resource demands, an iterative sim-
ulation process was used to find longer sampling periods for
both controllers without introducing unacceptable performance
degradation.

Observation 4: Selecting sampling periods, desired closed-
loop poles, or even having a higher amplitude for the reference
signal may cause the values of the control signal to be out of
range. Relations illustrating tradeoffs in the design of embedded

control systems can also be taught to the students, such as
showing that increasing sampling rates mean stronger control
signals (saturation problem) but also more processor usage
(feasibility/schedulability problem).

E. Problem 5. Controller Design: Tracking

The controller design has to consider that the goal is to track a
voltage. The standard tracking structure [39], that includes Nu

as the matrix for the feedforward signal to eliminate steady-
state errors and Nx as the matrix that transforms the reference
r into a reference state, can be adopted. Following the case
study, Nu = [1] and Nx = [1 0], and the discrete gains are
K = [0.0685 − 0.0249] or K = [1.0691 − 0.0189] for the
fast or overshoot controller, respectively.

Observation 5: Students can practice other tracking struc-
tures, such as integral control, and can study whether the code
of the controller would suffer significant changes.

F. Problem 6. Controller Design: Closed-Loop Simulation

The simulated closed-loop response for the fast and over-
shoot controllers is shown in Fig. 2(b) and (c), respectively.

Observation 6: As before, simulations can be done using
different methods.

G. Problem 7. Controller Design: Observers

For the simulation, the two state variables are available.
However, in the real experiment, an observer must be included.
For simplicity in coding the control task, a reduced observer
can be chosen for observing the second state variable x2.
For example, the observer discrete gain is Kr = −37.81 or
Kr = −13.42 for the fast or overshoot controller if the observer
continuous closed-loop pole is located at pob = −50.

Observation 7: Students can design and evaluate by sim-
ulating different types of observers (reduced, complete, etc.)
with different dynamics, i.e., they can also evaluate the effect
of different locations for the observer poles. From an imple-
mentation point of view, students can also assess the effect
that splitting the control algorithm into two parts (calculate
control signal and update state) has on input–output delays and
schedulability [41].

H. Problem 8. Implementation: Kernel Configuration and
Control Algorithm

The first implementation involves coding the controller in a
periodic task that will execute in isolation on top of Erika. The
main pseudocodes are shown in Figs. 3–5.

Fig. 3 shows the conf.oil file that specifies the kernel config-
uration with the Earliest Deadline First (EDF [40]) scheduling
algorithm and a periodic task that will be used to implement,
for instance, the fast controller. The basics of the main code are
shown in Fig. 4. First, the timer T1 is initialized and, together
with SetRelAlarm, will produce the periodic activation of the
control task every 10 ms (the processor speed was configured
at 40 million instructions/s). Fig. 5 shows the control task code,
including the observer and the tracking structure.
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Fig. 3. Kernel configuration file.

Fig. 4. Main code.

Fig. 5. Control task code.

Observation 8: Carrying out the kernel configuration and
programming the controller could be taught following an or-
dered sequence of steps, such as the following: 1) introduction
to kernel configuration; 2) introduction to periodic tasks; and
3) introduction to input/output operations (PWM, ADC).

I. Problem 9. Implementation: Setup and Monitoring Details

Fig. 6(a) shows the experimental setup that includes an oscil-
loscope (for displaying the circuit output voltage) to show the
open-loop response [Fig. 6(b)] and the closed-loop responses
[Fig. 7(a) and (b)] achieved by each controller executing in
isolation. The oscilloscope screenshots confirm that the im-
plementation achieves the control goal: The system output
performs the desired fast tracking or achieves the specified
overshoot.

Observation 9: An oscilloscope has been used to monitor
both the responses. It can also be of interest to monitor whether
the control task executes when specified. Another option could
be to use the Multibus board to send the data of interest via
Ethernet or any other available communication protocol. This

Fig. 6. Experiment setup and monitoring. (a) Setup. (b) Open-loop response.

Fig. 7. RCRC responses. (a) Fast closed-loop response. (b) Overshoot
closed-loop response.
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would pose interesting challenges in terms of the real-time
system such as noninvasive debugging.

J. Problem 10. Multitasking: Simulation

A second implementation is introduced to illustrate more ad-
vanced concepts. In the previous implementation, a control task
was executing in isolation. However, in many high-technology
systems, the processor is used not only for the control com-
putation but also for interrupt handling, error management,
monitoring, etc. Furthermore, it is known that, in multitasking
real-time control systems, jitters, i.e., timing interferences on
control tasks due to the concurrent execution of other tasks,
deteriorate the control loop performance [41]. The objective of
this implementation is to observe these degrading effects and
implement corrective actions, e.g., [42]–[44].

A starting point is to inject a new task in the kernel for each
control task. The new task, named noisy task, when executed
together with the fast controller, is given a period (and relative
deadline) of 11 ms, and it imposed an artificial execution time
of 9 ms. The noisy task that goes together with the overshoot
controller has a period and relative deadline of 110 ms with
90 ms of execution time. The simulation of each multitask-
ing system was done in the TrueTime simulator [45]. Putting
together each control task with the corresponding noisy task
under EDF results in timing variability (jitter) for the control
task, as shown for the first multitasking system in the schedule
in Fig. 8(a). In this figure, the bottom curve represents the
execution of the fast controller task, whereas the top curve
represents the execution of the noisy task. In each graph, the
low-level line denotes no execution (i.e., intervals in which the
processor is idle), the middle-level line denotes a task ready to
execute (i.e., waiting in the ready queue), and the high-level
line denotes a task in execution. Note that the control task has
a measured execution time of 0.12 ms, which is much less than
that in the noisy task.

Looking at the plant responses in Fig. 8(b) and (c), it can
be appreciated that the fast controller does not exhibit control
performance degradation, while the overshoot controller suffers
some degradation: Overshoots are bigger, square amplitude
differs, transient response varies, etc. This fact indicates that the
current control design for the fast controller is robust against
jitters induced by scheduling, while the second one is more
fragile.

Observation 10: Adopting an iterative simulation study, stu-
dents can learn which parameters play an important role when
jitters appear. Are shorter sampling periods, or nonovershooted
responses, a guarantee for having robust control designs?
Which role do deadlines play in reducing jitters? For further
questions and solutions, see [46] and references therein.

K. Problem 11. Multitasking: Implementation
and Monitoring Details

The new implementation requires specifying the noisy task
by modifying the kernel oil file in terms of defining the new
task and the associated alarm. Furthermore, the new task has
to be coded: Forcing an artificial execution time is achieved by
placing a delay into the code. The main code has to be modified
to configure the new alarm associated to the new task.

Fig. 8. Simulated multitasking RCRC responses and schedule. (a) Partial
schedule. (b) Faster multitasking closed-loop response. (c) Overshoot multi-
tasking closed-loop response.

After the implementation, in the first multitasking system, it
can be verified that scheduling conflicts [as illustrated in the
simulated schedule shown in Fig. 8(a)] may occur, as shown in
Fig. 9(a). In this figure, the execution of the fast controller task
sets an output pin to 0 and 1 at each job start and finishing time,
and the noisy task sets an output pin to 0 and 0.5 at each job
start and finishing time. In addition, similar responses for the
fast and overshoot controllers are obtained [see Fig. 9(b) and
(c)], showing that the overshoot controller suffers degradation
from jitters, while the fast controller shows the same response
as it is executed in isolation. For illustrative purposes, Fig. 10(a)
shows the overshoot controller response when executing in
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Fig. 9. Implemented multitasking RCRC responses and schedule. (a) Par-
tial schedule. (b) Faster multitasking response. (c) Overshoot multitasking
response.

isolation (dark curve) and when executing in the multitasking
system (gray curve).

Observation 11: Undergraduate students may work the ex-
periment up to this problem. It shows the importance of concur-
rence and resource sharing with respect to control performance
in a multitasking embedded control system.

L. Problem 12: Multitasking: Design for Eliminating or
Minimizing the Jitter Problem

Recent research literature has faced the problems introduced
by jitter, and many solutions have been proposed. Here, the
solution proposed by Lozoya et al. [44] has been adopted.

The basic idea is to synchronize the operations within each
control loop at the actuation instants. In this way, the time
elapsed between consecutive actuation instants, named tk−1

and tk, is exactly equal to the sampling period h. Within this
time interval, the system state is sampled, named xs,k, and

Fig. 10. Overshoot controller: Degradation and solution. (a) Overshoot con-
troller with/without jitters. (b) Overshoot controller eliminating the jitter
problem.

the sampling time is recorded ts,k ∈ (tk−1, tk). The difference
between this time and the next actuation time

τk = tk − ts,k (4)

is used to estimate the state at the actuation instant as

x̂k = Φ(τk)xs,k + Γ(τk)uk−1 (5)

where Φ(t) = eAt, Γ(t) =
∫ t

0 eAs dsB, with A and B being
the system and input matrices in (3), and uk−1 is the previous
control signal. Then, making use of x̂k, the control command is
computed using the original control gain K as

uk = Kx̂k. (6)

The control command uk is held until the next actuation
instant. A control strategy using (4)–(6) relies on the time
reference given by the actuation instants, if uk is applied to the
plant by hardware interrupts, for example. In addition, samples
are not required to be periodic because τk in (4) can vary at each
closed-loop operation.

After implementing this strategy on the overshoot controller
in the multitasking system, Fig. 10(b) shows the result. Specif-
ically, it shows the overshoot controller response when ex-
ecuting in isolation (dark curve) and when executing in the
multitasking system using the algorithm that eliminates jitters
(gray curve).

Observation 12: The problem presented previously and its
solution can be split into several tasks, like analysis and
modeling of the new control algorithm, implementation of the
control algorithm, etc. An interesting issue is how synchronized
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actuation instants can be forced in the kernel. For example,
a solution could be to use a periodic task for computing uk

and another periodic task for applying uk at the required time.
Another solution could be to enforce synchronized executions
at the kernel level, using the EDF tick counter. Moreover, since
different solutions to the jitter problem, such as that in [42]
or [43], could have also been applied, students that are more
confident or interested in specific fields can select the solution
that better meets their preferences.

V. TENTATIVE WORK PLAN AND ITS APPLICATION

TO A SPECIFIC COURSE

The previous section has detailed some of the steps required
to successfully carry out the laboratory activity presented in
this paper. This section summarizes them in order to propose
a tentative work plan that is divided into several sessions, with
each one being a 2-h laboratory.

1) S1-Introduction: Introduction to the activity and sim-
ulation of the open-loop response after obtaining the
state-space form of the RCRC circuit from the circuit
differential equations (1) (consider random values for R
and C). Here, it is assumed that a state-space notation is
chosen.

2) S2-Problem specification (a): This session should be
used to specify the problem in terms of the levels for
the reference signal and for the discrete controller design,
which includes selecting the sampling period and the
closed-loop pole locations, if pole placement is used.
Other control approaches, like optimal control, could also
be used.

3) S3-Problem specification (b): To complement the pre-
vious session, observers should also be designed and
simulated. The outcome of this session should be the
complete simulation setup.

4) S4-Basic implementation (a): Build the RCRC circuit
and verify its dynamics in open loop. Start the controller
implementation in a periodic hard real-time task in the
processing platform.

5) S5-Basic implementation (b): Finish the controller im-
plementation and test its correctness.

6) S6-Multitasking (a): Incorporate a noisy task in the
simulation setup to evaluate the effects of jitter. This
step would require using, for example, the TrueTime
simulator.

7) S7-Multitasking (b): Incorporate the noisy task in the
implementation and validate the previous simulation
results.

8) S8-Advanced implementation (a): If degradation in
control performance is detected in the previous session,
simulate advanced control algorithms or adopt real-time
techniques to solve or reduce the jitter problem.

9) S9-Advanced implementation (b): Implement the pre-
vious solutions and validate them.

Note that the program timing, the layout, and the set of
covered topics should be adapted to the particular needs/
background of the target audience or to the goals of a spe-
cific curriculum. For example, the proposed activity has been

introduced as part of the curriculum of the two-year master
degree on Automatic Control and Industrial Electronics in the
School of Engineering of Vilanova i la Geltrú (EPSEVG) of
the Technical University of Catalonia (UPC) [47]. In particular,
since 2007, the experiment has been tailored to become part of
the laboratory for the Control Engineering course, which covers
continuous and discrete linear time-invariant (LTI) control sys-
tems, as well as nonlinear control systems, all using state-space
formalism. Sessions S1–S5 were adopted for the laboratory of
the discrete LTI control system part.

The Control Engineering course can be followed by students
either in the first semester of the first year or in the first semester
of the second year. Students choosing the second option si-
multaneously attend a course on real-time systems. Therefore,
within the same classroom, not all the students are familiar with
real-time systems. To overcome this apparent drawback, teams
of three students were formed containing at least a student with
competence on real-time systems. Within such heterogeneous
teams in terms of skills and theoretical background, it was
observed that students took their responsibilities, and teamwork
was significantly improved.

As in every course edition, after finishing the discrete LTI
control system part, a short and simple questionnaire is given
to the students to let them evaluate several aspects of this
part of the course. The question Do the laboratory activities
permit to better understand the theoretical concepts? is the
only one related to the laboratories. Looking at the students’
answers and taking into account that, before introducing the
presented experiment, the laboratory activities were focused on
the simulation of an inverted pendulum, the percentage of stu-
dents appreciating the practical part has increased significantly.
Although the standard course evaluation indicates this positive
trend, a more complete evaluation tailored to the introduction
of this experiment is required.

VI. CONCLUSION

This paper has presented a laboratory activity to be integrated
in the education curriculum of embedded control system en-
gineers. The activity consists of a real-time controller of an
RCRC electronic circuit. The potential benefits, the compe-
tences to be acquired, and the expected learning outcomes for
students have been presented. The selection of the plant and
processing platform has been discussed. Extensive details of
a sample implementation have been presented, and a tentative
work plan for carrying out the activity has been provided.

In summary, the proposed activity poses several real chal-
lenges to the students that can be met by putting together
interdisciplinary skills (electronics, real-time systems, control
theory, and programming) toward a single goal: building a
working system.

REFERENCES

[1] D. J. Jackson and P. Caspi, “Embedded systems education: Future direc-
tions, initiatives, and cooperation,” SIGBED Rev., vol. 2, no. 4, pp. 1–4,
Oct. 2005.

[2] A. Crespo, J. Vila, F. Blanes, and I. Ripoll, “Real-time education in a
control engineering curriculum,” in Proc. 3rd IEEE Real-Time Syst. Educ.
Workshop, 1998, pp. 112–116.



3306 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 10, OCTOBER 2010

[3] K. G. Ricks, D. J. Jackson, and W. A. Stapleton, “Incorporating embedded
programming skills into an ECE curriculum,” SIGBED Rev., vol. 4, no. 1,
pp. 17–26, Jan. 2007.

[4] W. A. Halang, “A curriculum for real-time computer and control systems
engineering,” IEEE Trans. Educ., vol. 33, no. 2, pp. 171–178, May 1990.

[5] P. Caspi, A. Sangiovanni-Vincentelli, L. Almeida, A. Benveniste,
B. Bouyssounouse, G. Buttazzo, I. Crnkovic, W. Damm, J. Engblom,
G. Folher, M. Garcia-Valls, H. Kopetz, Y. Lakhnech, F. Laroussinie,
L. Lavagno, G. Lipari, F. Maraninchi, P. Peti, J. de la Puente, N. Scaife,
J. Sifakis, R. de Simone, M. Torngren, P. Veríssimo, A. J. Wellings,
R. Wilhelm, T. Willemse, and W. Yi, “Guidelines for a graduate curricu-
lum on embedded software and systems,” ACM Trans. Embed. Comput.
Syst., vol. 4, no. 3, pp. 587–611, Aug. 2005.

[6] A. Sangiovanni-Vincentelli and A. Pinto, “An overview of embedded
system design education at Berkeley,” ACM Trans. Embed. Comput. Syst.,
vol. 4, no. 3, pp. 472–499, Aug. 2005.

[7] K. G. Ricks, D. J. Jackson, and W. A. Stapleton, “An embedded systems
curriculum based on the IEEE/ACM model curriculum,” IEEE Trans.
Educ., vol. 51, no. 2, pp. 262–270, May 2008.

[8] D. Davcev, B. Stojkoska, S. Kalajdziski, and K. Trivodaliev, “Project
based learning of embedded systems,” in Proc. 2nd WSEAS Int. Conf.
Circuits, Syst., Signal Telecommun., 2008, pp. 120–125.

[9] S. Nooshabadi and J. Garside, “Modernization of teaching in embedded
systems design—An international collaborative project,” IEEE Trans.
Educ., vol. 49, no. 2, pp. 254–262, May 2006.

[10] J. W. Bruce, J. C. Harden, and R. B. Reese, “Cooperative and progressive
design experience for embedded systems,” IEEE Trans. Educ., vol. 47,
no. 1, pp. 83–92, Feb. 2004.

[11] J. Fernandez, R. Marin, and R. Wirz, “Online competitions: An open space
to improve the learning process,” IEEE Trans. Ind. Electron., vol. 54,
no. 6, pp. 3086–3093, Dec. 2007.

[12] U. Munz, P. Schumm, A. Wiesebrock, and F. Allgower, “Motivation and
learning progress through educational games,” IEEE Trans. Ind. Electron.,
vol. 54, no. 6, pp. 3141–3144, Dec. 2007.

[13] L. Gomes and S. Bogosyan, “Current trends in remote laboratories,” IEEE
Trans. Ind. Electron., vol. 56, no. 12, pp. 4744–4756, Dec. 2009.

[14] D. T. Rover, R. A. Mercado, Z. Zhang, M. C. Shelley, and D. S. Helvick,
“Reflections on teaching and learning in an advanced undergraduate
course in embedded systems,” IEEE Trans. Educ., vol. 51, no. 3, pp. 400–
412, Aug. 2008.

[15] K.-E. Årzén, A. Blomdell, and B. Wittenmark, “Laboratories and real-
time computing: Integrating experiments into control courses,” IEEE
Control Syst. Mag., vol. 25, no. 1, pp. 30–34, Feb. 2005.

[16] G. Buttazzo, “Research trends in real-time computing for embedded sys-
tems,” ACM SIGBED Rev., vol. 3, no. 3, pp. 1–10, Jul. 2006.

[17] P. Horacek, “Laboratory experiments for control theory courses: A sur-
vey,” Annu. Rev. Control, vol. 24, pp. 151–162, 2000.

[18] M. Moallem, “A laboratory testbed for embedded computer
control,” IEEE Trans. Educ., vol. 47, no. 3, pp. 340–347,
Aug. 2004.

[19] D.-J. Lim, “A laboratory course in real-time software for the control
of dynamic systems,” IEEE Trans. Educ., vol. 49, no. 3, pp. 346–354,
Aug. 2006.

[20] M. Huba and M. Simunek, “Modular approach to teaching PID con-
trol,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3112–3121,
Dec. 2007.

[21] VxWorks Operating System from WindRiver. [Online]. Available:
http://www.windriver.com/

[22] R. Marau, P. Leite, M. Velasco, P. Martí, L. Almeida, P. Pedreiras, and
J. M. Fuertes, “Performing flexible control on low cost microcontrollers
using a minimal real-time kernel,” IEEE Trans. Ind. Informat., vol. 4,
no. 2, pp. 125–133, May 2008.

[23] F. Salewski, D. Wilking, and S. Kowalewski, “Diverse hardware plat-
forms in embedded systems lab courses: A way to teach the differences,”
SIGBED Rev., vol. 2, no. 4, pp. 70–74, Oct. 2005.

[24] Evidence srl. [Online]. Available: http://www.evidence.eu.com/
[25] Real-time Linux Found., Inc. [Online]. Available: http://www.

realtimelinuxfoundation.org/
[26] J. A. Stankovic and K. Ramamritham, “The spring kernel: A new para-

digm for real-time operating systems,” SIGOPS Oper. Syst. Rev., vol. 23,
no. 3, pp. 54–71, Jul. 1989.

[27] K. M. Zuberi, P. Pillai, and K. G. Shin, “Emeralds: A small-memory real-
time microkernel,” in Proc. 7th ACM Symp. Oper. Syst. Principles, 1999,
pp. 277–299.

[28] P. Gai, G. Lipari, L. Abeni, M. di Natale, and E. Bini, “Architec-
ture for a portable open source real-time kernel environment,” in
Proc. 2nd Real-Time Linux Workshop/Hand’s On Real-Time Linux Tu-

torial, Nov. 2000, 9 pages. [Online]. Available: http://www.osadl.org/
RTLWS-2000.rtlws-2000.0.html

[29] E. Mumolo, M. Nolich, and M. Noser, “A hard real-time kernel for Mo-
torola microcontrollers,” in Proc. 23rd Int. Conf. Inf. Technol. Interfaces,
Jun. 2001, pp. 75–80.

[30] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo, “A new kernel approach for
modular real-time systems development,” in Proc. 13th IEEE Euromicro
Conf. Real-Time Syst., Jun. 2001, pp. 199–206.

[31] D. Henriksson and A. Cervin, “Multirate feedback control using the
TinyRealTime kernel,” in Proc. 19th Int. Symp. Comput. Inf. Sci., Antalya,
Turkey, Oct. 2004, pp. 855–865.

[32] OSEK/VDX Portal. [Online]. Available: http://www.osek-vdx.org/
[33] G. Buttanzo, Hard Real-Time Computing Systems: Predictable Schedul-

ing Algorithms and Applications. Norwell, MA: Kluwer, 1997.
[34] Eclipse Portal. [Online]. Available: http://www.eclipse.org/
[35] Microchip Portal. [Online]. Available: http://www.microchip.com/
[36] Scilab/Scicos Portal. [Online]. Available: http://www.scilab.org/
[37] MathWorks Portal. [Online]. Available: http://www.mathworks.com/
[38] D. Hercog, B. Gergic, S. Uran, and K. Jezernik, “A DSP-based remote

control laboratory,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3057–
3068, Dec. 2007.

[39] K. Ogata, Modern Control Engineering, 4th ed. Englewood Cliffs, NJ:
Prentice-Hall, 2001.

[40] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. Assoc. Comput. Machinery,
vol. 20, no. 1, pp. 46–61, Jan. 1973.

[41] K.-E. Årzén, A. Cervin, J. Eker, and L. Sha, “An introduction to control
and scheduling co-design,” in Proc. 39th IEEE Conf. Decision Control,
2000, pp. 4865–4870.

[42] J. Skaf and S. Boyd, “Analysis and synthesis of state-feedback controllers
with timing jitter,” IEEE Trans. Autom. Control, vol. 54, no. 3, pp. 652–
657, Mar. 2009.

[43] P. Balbastre, I. Ripoll, J. Vidal, and A. Crespo, “A task model to reduce
control delays,” Real-Time Syst., vol. 27, no. 3, pp. 215–236, Sep. 2004.

[44] C. Lozoya, M. Velasco, and P. Martí, “The one-shot task model for robust
real-time embedded control systems,” IEEE Trans. Ind. Informat., vol. 4,
no. 3, pp. 164–174, Aug. 2008.

[45] D. Henriksson, A. Cervin, and K.-E. Årzén, “TrueTime: Simulation
of control loops under shared computer resources,” in Proc. 15th
IFACWorld Congr., 2002, 7 pages. [Online]. Available: http://www.
ifac-papersonline.net/Detailed/26606.html

[46] Y. Wu, E. Bini, and G. Buttazzo, “A framework for designing embedded
real-time controllers,” in Proc. 14th IEEE Int. Conf. Embed. Real-Time
Comput. Syst. Appl., Aug. 2008, pp. 303–311.

[47] EPSEVG School Portal. [Online]. Available: http://www.epsevg.upc.edu/

Pau Martí (M’02) received the B.S. degree in com-
puter science and the Ph.D. degree in automatic
control from the Technical University of Catalonia
(UPC), Barcelona, Spain, in 1996 and 2002,
respectively.

Since 1996, he has been an Assistant Professor
with the Department of Automatic Control, UPC.
During his Ph.D., he was a Visiting Student at
Mälardalen University, Västerås, Sweden. From
2003 to 2004, he was a Research Fellow with the
Computer Science Department, University of

California, Santa Cruz. His research interests include embedded systems,
control systems, real-time systems, and communication systems.

Manel Velasco received the B.S. degree in mar-
itime engineering and the Ph.D. degree in automatic
control from the Technical University of Catalonia
(UPC), Barcelona, Spain, in 1999 and 2006,
respectively.

Since 2002, he has been an Assistant Professor
with the Department of Automatic Control, UPC.
His research interests include artificial intelligence,
real-time control systems, and collaborative control
systems, particularly on redundant controllers and
multiple controllers with self-interacting systems.



MARTÍ et al.: DESIGN OF AN EMBEDDED CONTROL SYSTEM LABORATORY EXPERIMENT 3307

Josep M. Fuertes (S’74–M’96) received the B.S.
degree in industrial engineering and the Ph.D. degree
from the Technical University of Catalonia (UPC),
Barcelona, Spain, in 1976 and 1986, respectively.

From 1975 to 1986, he was a Researcher with the
Institut de Cibernética (Spanish Consejo Superior de
Investigaciones Científicas). In 1987, he became a
Permanent Professor with UPC. In 1987, he got a
position for a year at the Ernest Orlando Lawrence
Berkeley National Laboratory, Berkeley, CA, where
he was a Visiting Scientific Fellow for the design

of the Active Control System of the W. M. Keck 10-m segmented telescope
(Hawaii). In 1992, he was responsible of the University Research Line in
Advanced Control Systems and, later, of the Distributed Control Systems
Group. From 1996 to 2001, he acted as a Spanish Representative at the
Council of the European Union Control Association. He is currently with the
Department of Automatic Control, UPC. His research interests are in the areas
of distributed, networked, and real-time control systems and applications. Since
1989, he has been coordinating projects at the national and international levels
related to the aforementioned areas of expertise.

Dr. Fuertes is a member of the Administrative Committee of the IEEE
Industrial Electronics Society, where he is the Chair of the Technical Committee
on Networked-Based Control Systems and Applications. He has collaborated as
the Organizer, the Chairman, the Session Organizer, and a member of program
committees for several international conferences.

Antonio Camacho received the B.S. degree in
chemical engineering and the M.S. degree in automa-
tion and industrial electronics from the Technical
University of Catalonia, Barcelona, Spain, in 2000
and 2009, respectively, where he is currently working
toward the Ph.D. degree in electronic engineering.

His research interests include networked and em-
bedded control systems, industrial informatics, and
power electronics.

Giorgio Buttazzo (SM’05) received the B.S. de-
gree in electronic engineering from the University of
Pisa, Pisa, Italy, in 1985, the M.S. degree in com-
puter science from the University of Pennsylvania,
Philadelphia, in 1987, and the Ph.D. degree in com-
puter engineering from Scuola Superiore Sant’Anna,
Pisa, in 1991.

From 1987 to 1988, he was with the General Ro-
botics, Automation, Sensing and Perception Labora-
tory, University of Pennsylvania, where he worked
on active perception and real-time control. He is

currently a Full Professor of computer engineering with Scuola Superi-
ore Sant’Anna. He has authored six books on real-time systems and over
200 papers in the field of real-time systems, robotics, and neural networks. His
main research interests include real-time operating systems, dynamic schedul-
ing algorithms, quality-of-service control, multimedia systems, advanced ro-
botics applications, and neural networks.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


