ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL II

Arty MicroBlaze Soft Processing System
Implementation Tutorial II

Daniel Wimberly, Sean Coss

Abstract—The Microblaze soft processor was set up on the Arty
Artix-7 FPGA Evaluation board to read analog and digital signals
using the Artix-7’s built-in analog-to-digital converter (ADC) and
its digital input pins. The Microblaze configuration was first set
up using Xilinx’s Vivado, then the C program to demonstrate the
ADC and digital inputs was run using Xilinx’s SDK. The output
of each signal is sent through the USART port on the board to
be displayed on a PC terminal.

I. ARTY BOARD AND MICROBLAZE

The board used for the project was the Arty board which
is a development board built around the Artix-7 FPGA. This
was developed by Xilinx for use with the MicroBlaze soft
processor which is an HDL defined processor which can be
written to the Artix-7 FPGA. The evaluation board provides
connectivity such as switches, buttons, LEDs, RGB LEDs,
Pmod connectors, shield connectors, USB, and Ethernet to
work with HDL components and those defined through the
MicroBlaze.

II. ADC HARDWARE SETUP

This procedure builds on the implementation performed
in the previous project report, titled Arty MicroBlaze Soft
Processing System Implementation Tutorial. The process for
the hardware implementation is highlighted below:

Open the previous project from Vivado SDK
Add the XADC Wizard block to the project
Add an interrupt controller to the project
Add an interrupt concatenation to the project
Add GPIO blocks to the project

Adjust added block settings

Add GPIO pins to ADC block

Create block diagram wrapper

Create pin constrains for analog pins
Generate and Export bitstream

The XADC Wizard IP was first added (Figure 1). This block
is the ADC controller - it initializes the ADC and allows it to be
used with internal and external analog inputs. Internal analog
inputs include the internal temperature reference, internal
voltage monitors, and several other system health monitors.
External pins are also connected to the ADC, and these are
what were used in the implementation.

Search xadd (1 match)

I XADC Wizard xadc_wiz_0

ipZinic_imt
user_lamp_alarm_out

vosint_alamm_out

4 s axi il
|| 4+ Vp_vn al_out
channal_outf40]

vecaux_alarm_out

s axi_ack
s_axi_aresaln aos_out
alarm_out

aos_out

busy_out

XADC Wizard
ENTER to select, ESC to cancel, Ctrl+Q for IP details

Fig. 1. Add XADC Wizard

The XADC Wizard has a large number of configuration
options, which can be set up both on the hardware and software
side. Here, the following settings were used in the wizard.

e Startup Channel Selection: Channel Sequencer

e Control/Status Ports: Temp Bus enabled

e ADC Calibration: No ADC Offset or Gain calibration

e Channel Sequencer: Check VP/VN, and vauxp/vauxn
pins 0, 1, 2,4,5,6,7,9, 10, 12 13, 14, 15

These settings can be seen in Figure 2 to Figure 5

Fig. 2.

XADC Wizard - Basic

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL II

I x
XADC Wizard (3.3))
© ooameraion = P Losaton
Snowassizapors Gomponentiame 12t w0
Basc | ADCSoup Aarms|ChamelSecwncer | Surma
Seqencertioce Conamuous v Chamelersgng Nere v
o caitrason ooty Sensr Cabaton
K0 otse Caraton Sensor Ot Caraton
2 Eraie CALBRATION Averogng
Exemattiorer soun
e e
user_terp_tarm_out Cramertrix e
“eont_opm_out
4o vezaue_slm_out o
X oot
Lt Pow Down ptons
cramnet o 0]
coc it 4008
am_out
cos it
sy out
temp i)
o Concr

Fig. 3. XADC Wizard - ADC Setup

Fig. 5.

J Re-customize IP

XADC Wizard (3.3)

@ Documentation | IP Location

[] show disabled parts

o <+ s_axi_lite
-+ Wp_vn
+ waux0
-+ waux!
+ a2
+ “ald
+ “alxg
-+ Wauxg
-+ Waux?
-+ wauxd
-+ waux10
+ waux12
+ waux13
+ Walxig
+ “alx15
- 5_ai_aclk

«Q 5_axi_aresetn

ipzintc_irpt
user_temp_alarm_out
veoint_alarm_out =
VECCAUX_alarm_out =

channel_out(4.0] ==
BOC_out ==
alarm_out =
e0s_out —
busy_out —
temp_out{11:0] =

Component Name | xade_wiz_0

Basic | ADC Setup | Alarms | Channel Sequencer Summary

VCCINT
VCCAUX
VCCBRAM
VPN
VREFP
VREFN
vaurpONauxnD
vauxpi vauxnt

vaurp2ivauxn2
vauxp3nauxn3
vauxpdivauxnd
vaUKp5NaUKNS
ValXpBNaUXNE
vaupTivauxnT
VaUKpBNaUXNS
vauxp9ivauxnd
vauxp10Nawm10
vauxpd Ivawmi1
vauxp1 2haum2
vauxp13naun13
vauxpldivauwnid

vauxp1Shawn1s

XADC Wizard - Channel Sequencer

The memory interface generator was previously set up to use
the ADC temperature readings for temperature compensation,
so it instantiated thee ADC. It was necessary to disable this
instantiation in the memory interface generator, then to route
the temperature output of the XADC Wizard block to the
memory interface generator.

0 Xiine Memory Interace Generstor

<
REFERENCE
DESIGN [1]

/' Re-customize 1P

XADC Wizard (3.3)

@ Documentation |- IP Location

‘Show disabled ports Component Name | xade_wiz_0

System Clock-

Choose. fgurat

System Clock

Reference Clock

Choose.

Sgle-£nded.

o Buffer

Reference Clock

Memory Selection
Controller Options

AXI Parameter

AU O O G ¢

HMemory Options.

Extended FPGA Options
10 Planning Options.

Pin Selection

System Signals Selection
Summary.

‘Simulation Options

PCB Information

Basic | ADC Sotp | Alarms Channel Sequencer | Summary
Over Temperature Alarm (*C) /| User Temperature Alarm (*C)
Togger 1280 100-12 Troger 850 10012
Reset (700 - 125 Reset (500 - 125
/| VCCINT Alarm (Volts) /| VCCAUX Alarm (Volts)
Lower [057 ' Lower [175 b0- 109
Usger [102 105 Upser 189 00189
ip2intc_irpt
user_temp_alarm_out 'VCCBRAM Alarm (Volts)
veelnt_alarm_out
Sl s_adite vecaw_alarm_out Lower [958 S
il+ vevn channel_out4:0]

0.0-105
s_axi_aclk eoc_out Upper | 105

& XILINX

busy_out

T st | vt

Choose the desired System Reset Polarity.
‘System Reset Polarity

Internal ref

Internal ref can be used to allow the use of the Vref

Sngle-£ndd.

No Buffer

[AcTIve Low

10pins,

|

Internal Vref

10 Power Reduction

only outputs,

data rates. This can

10 Power Reduction

XADC Instantiation
the

U

inactivity

S|

data windon.

temperature
the d

the

ble this option to have the block

instantiated. If the XADC is ar ady used, cisable this MIG option, The User i then required to provide the temperature value to the top level 12-bit
device_temp_iinput port. Refer to Answer Record 51667 or the UGS36 for detaied information.

XADC Instantiation

=)

|

<o =

Fig. 6. Memory Interface Generator - Disable XADC Instantiation

Fig. 4. XADC Wizard - Alarms

After this step, the AXI Interrupt Controller was added, and

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL II

its settings were adjusted according to Figure 7 to allow fast
interrupt logic.

4 Re-customize IP X
AXI Interrupt Controller (4.1) Pl
@ Documentation IP Location

Show disabled ports ComponentName | axi_intc_0

Basic Advanced | Clocks

Interrupt Usage

Number of Peripheral Interrupts (Auto) | 1

Fast Interrupt Mode
/| Enable Fast interrupt Logic
Intermupt Vector Address Register reset value (Auto) | 0x00000010

Peripheral Interrupts Type
(@) Al) Interrupts type - Edge or Level | OFFFFFFFF
(@) AT) Level type - High or Low

(@) Alto) Edge type -Rising or Falling | OFFFFFFFF

O:FFFFFFFF

Processor Interrupt Type and Connection

Interupttype Level Interrupt

Level type Adtive High v

Interrupt Output Connection | Bus

Fig. 7. AXI Interrupt Controller Settings

Next, the shield pins 0-19 and 26-41 were added to the block
diagram from the board tab. Both shield interfaces were added
to a single AXI GPIO IP. Finally, a Concat IP was added to
concatenate the ADC interrupts with any future interrupts that
may be added. Its concatenation input number was set to 1 in
its settings.

Now that all IPs were added to the board, the board was
wired appropriately. On the XADC Wizard, each pin was first
set to be external, as shown in Figure 8. Then, the board was
wired as shown in Figure 9 (see appendices for larger version).

3
ADUL WIZ U
=—-- e 5 axi lite
" + Vaux0 Block Interface Properties...
%, Highlight 3
" 4+ Vaux1 ania
" 4+ Vaux2
" 4+ Vaux4 B copy
" <+ Vauxb
" 4+ Vaux6| Q sSearch.
" 4 Vaux7 ' Selectal
" 4 Vaux9| + Addip.
" + Vaux-](Add Module..
. % Make External Cirl+T
" 4+ Vauxii
) Fa Run Connection Automation...
" 4+ Vaux1i ,
IP Settings... k
" + Vaux14 [¥ validate Design
II 1 Vi .._AF

Fig. 8. Make XADC Pins External

Fig. 9. System Block Diagram

Now, the Address Editor was used to assign addresses to all
of the new slave devices, as shown in Figure 10

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL II

Diagram % | Address Editor x
Q =/ s #

Gell Slave Interface Base Name ~ Offsel Address Range High Address

~ %F microblaze_0

~ M Data (32 s
== axi_gpio_sw S_AXI Reg 0x4001_0000 64K v 0x4001_FFEF
== axi_gpio_led S_AXI Reg 0x4000_0000 64K v 0x4000_FFEF
= axi_uartite_0 S_AXI Reg 84K v 0xd060_FFFF
== micrablaze_0_local_memory/dimb_bram_if_cntir SLMB Wem 2K v 0x0000_TFFF
= mig_7series_0 5_AXI memaddr 256M v OxSFFE_FFFF
= xadc_wiz_0 s_ax_lite Reg B4K v 0x44R0_FFFF
= ax_intc_0 s_ax Reg 0x4120_0000 64K v 0x4120_FFFF

~ = Unmapped Slaves (1

= axi_gpio_0 — ~g
Assign Address
~ B Instruction (22 2 bits
== microblaze_0_local_mer m 0x0000_0000 32K v 0x0000_7FFF
= mig_Tseries_0 imaddr 0x8000_0000 256M ~ OxE8FFF_FFFF

Exclude Segment

B} Auto Assign Address

Group by Master Interfaces

Exportto Spreadsheet.
Fig. 10. Assigning New Slave Addresses

Next, the hdl wrapper was created for the block diagram.
Creating this wrapper auto-validates the design to ensure no
errors exist.

A final step was to add pin constraints that defined which
physical FPGA pins the analog input pins were located at. To
do this, a new constraints (.xdc) file was added, and the text
shown in Figure 11. Note that in this file, the PACKAGE_PIN
represents the physical FPGA pin, and the argument of the
get_ports command is the analog pin name (Vauxi_v_n for
negative, Vauxi_v_p for positive). To ensure the pin names
are correct, it is recommended to open the hdl wrapper that
was created earlier to see what names are given to those ports,
and to make sure the pins.xdc file matches them.

Diagram x| AddressEditor X | pinsxdc X
ENvado2017ireport2_projectireport2_project srcsiconstrs_1inewlpins xdc

Q - B B N B Q

set_property
set_property -
set_property -
€ | set_property -
7 set_property -
¢ | set_property -
@ | set_property -
set_property -
set_property -
set_property -
set_property -
set_property —di

GE_PIN C14

{get_ports { Vauso_v.n }1:
[get_ports [Vauzo v p |17
[get_ports [Vausl v n

[get_ports { Vauxl v_p
[get_ports [Vaux2 v n
[get_ports Vaus2_vp }17
[get_ports [Vausd_vn
[get_ports [Vauzd v p
[get_ports [Vauss v n
{get_ports [Vauss_v_p 117
[get_ports { Vaust_v_n

[get_ports (Vausé v p
[get_ports (Vaux]_v_
[get_ports (Vaus?_v_p 117
fget_ports { Vauxt_v_n

(get_ports (Vauxs v p }1:
[get_ports (Vaw
{get_ports |
(get_ports {
(get_ports {
{get_ports { Vauxl3 v n |]
{get_ports ({ Vauxl3 vp 11
{get_ports { Vausl4_v_n 11
{get_ports [Vauxld vp |]
[get_ports (Vausls_v_n 11
TOSTANDARD LVCHOS33 } [get_ports { Vauxls v_p }1

set_property ~
set_property
set_property -di
set_property
set_property
set_property -di
set_property
set_property
set_property -
set_property
set_property
set_property -
27 set_property -
28 | set_property -

Fig. 11. Assigning Pin Constraints
At this point, the bitstream was created and exported to the
SDK for software implementation.

III. DIGITAL I/O HARDWARE SETUP

The processes for setting up the Digital I@was the exact
same as the process described in the first tutorial project in
which the AXI GPIO was set up. For this project a new AXI
GPIO module was set up and then was connected to “shield

dp0 dp19 and shield dp26 dp41” so that the AXI GPIO module
would connect to the shield pins. An image of this module is
shown in Figure 12.

axi_gpio_0

s Ax

—— s_axi_aclk

GPIO 4 ||——> shieid_dpo_dp19
GPI02 4 |||——> shieid_dp26_dp41

ip2intc_irpt

s_axi_aresetn

AXI GPIO

mig_7series_0

j+ S_AXI

device temp il11:01

{> poRr3

DDR3 +]||

Fig. 12. Digital I/O Hardware

IV. SDK AND ANALOG AND DIGITAL SOURCE
IMPLEMENTATION

The SDK implementation of the project involved the fol-
lowing steps:
e Create new application project using the latest design
wrapper and the “hello world” template
Use the xsysmon library for the ADC
Use the gpio library for digital reads
Setup ADC and GPIO ports
Reading ADC values and GPIO values
Print results over serial connection to serial monitor

To set up the code for analog and digital input, first the
right libraries had to be included. For the XADC portion
”xsysmon.h” was used and for the GPIO portion “xgpio.h”
was used. The ”xsysmon.h” contained all necessary addressing
information to select the proper registers when trying to read
ADC values. After this variables for controlling the channels
were set up. For analog input, it was desired to use the AQ
pin. In order to do this the analog ADC AUX min channel
value from “xsysmon.h” was shifted by 4 which would start
the addressing at the start of channel AO. This portion of the
code is shown in Figure 13.

// For xADC
#include <stdio.h>

#include "platform.h”
#include "xsysmon.h"

// For AXI GPIO

#include "xparameters.h”

#include “xbasic_types.h"

#include "xgpio.h"

#include “xstatus.h”

7/ XADC

#define RX_BUFFER_SIZE 7

#define xadc XPAR_SYSMON_@_DEVICE_ID
#define AG_CH XSM_CH_AUX_MIN + 4 //A0 pin

XSyshon xadc_inst;

char *channel[] = {"Temp","VECTnt","VCCAux", "VRefP","VRefN", "VBram", "AB_CH'};
//int sanple[6] = {8,1,2,4,5,6,3};
int sample[RX_BUFFER_STZE] = {XSM_CH_TEMP, XSM_CH_VCCINT, XSM_CH_VCCAUX, XSM_CH_VREFP, XSM_CH_VREFN, XSM_CH_VBRAM, A®_CH};

AXI GPIO

XGpio GpioInput;

Fig. 13. Code Preamble Section

After this the main section of the code was set up. First
to be set up in this section was the initialization for all of the
hardware. For the ADC this involved getting the configuration,

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL II

setting the sequencer mode, disabling alarms, and channel
enables. It should be noted that one issue that occurred in
this project was caused by the sequencer mode. Example code
had this set to “safe mode” such that only internal ADC
measurements could be made. Setting this to "CONTINPASS”
allowed the ADC to take external measurements and thus al-
lowed the project to work. For the GPIO initialization involved
initializing the GPIO device associated with the shield pins and
then setting the pins to be inputs. Only I/O pins O to 19 were set
as inputs since pins O through 7 were actually used for digital
input. The code for this section can be seen in Figure 14.

Fig. 14. Code Initialization Section

The final section of the code involved reading the ADC
values and converting to voltages as well as reading the digital
input. All of these inputs that were read in were then printed to
the serial port in a form such that the raw ADC, voltage value,
and digital value could all be read and continuously updated.
This was all done in an infinite loop so that measurements
were always being made and then reported. This section of
the code is shown in Figure 15.

while(1){

xa0C
XSyston_GetStatus (xade_inst_ptr); /* Clear the old status

TIndex <RX_BUFFER_SIZE; Index++){
lon_G |_SR_EOS_MASK) 1=XSM_SR_EOS_MASK);
st.

XD dex st_ptr, A0_CH);
XADC_Buf[Index] = XSysMon_GetAdcData(xadc_inst_ptr, sample[Index]);

Voltage %f", (XADC_BUF[6]>>4),XSysMon_RawTovoltage(XADC_BUF[6]));

e %s %f\n",channel [Index], XSyston_RawTovoltage(XADC_Buf[Index]));

1
CH: %K\r\n", inl);

RESULTS %/
printf("Raw: % Voltage %f D T/0: %62X\n\r", (XADC_Buf[6]>4),XSyson_RauToVoltage(XADC_Buf[6]),in1 &((1 << 8) - 1));

Fig. 15. Code Value Reading and Reporting Section

To set up an analog input, a voltage divider was set up
using a potentiometer which was set to a 3.3V max voltage
and then the middle wiper was connected to A0. A voltage of
3.3V was used because this was the maximum voltage that this
ADC pin could handle. Analog input was also tested using a

function generator and a sinusoidal input. A digital input was
set up using an external 8-dip switch array with the 8 switched
connected to pins 100 through IO7. Output to the serial port
was able to show that the values were being measured and
reported properly. Voltages were in the expected range of 0 to
3.3V and raw values were in the expected range of 0 to 4095
for the 12 bits of storage for each. The digital values shown
on the monitor matched the configuration of the dip switches.
An example output of this is shown in Figure 16.

Faw: 1642 Voltage 1. 202682 L I-0: 0OF
Faw: 1642 YVoltage 1.203003 o I-0: 0OF
Faw: 1g41l Voltage 1.202316 D I-0: 0OF
FHaw: 1642 Voltage 1. 202728 D I-.0: 0OF
Faw: 1641 Voltage 1.202499 o I-0: 0OF
FEaw: 1640 Voltage 1.201447 L I-.0: 0OF
Faw: 1642 Voltage 1.2028:20 o I-0: 0OF
Faw: 1643 Voltage 1. 203506 D I-.0: 8F
Faw: 1642 Voltage 1.202728 D I-0: 8F
Faw: 1642 Voltage 1.202682 o I-0: CF
Faw: 1640 Voltage 1.201584 D I-0: CF
Faw: 1643 Yoltage 1.203552 o I-0: CF
Faw: 1643 Voltage 1.203918 D I-0: CF
Faw: 1644 Voltage 1.204651 D I-.0: CF

Fig. 16. Code Value Reading and Reporting Section

V. CONCLUSION

In conclusion XADC and AXI GPIO modules were im-
plemented on an Arty board along with the Microblaze soft
processor. The steps for setting the both modules in the
Vivado software were described. After the modules were set
up and the hardware exported for working with the SDK,
code was written to set up channels, initialize hardware, take
measurements and report values from both the XADC and the
AXI GPIO modules. The XADC was set up to take analog
measurements on pin AO. The AXI GPIO was set up to make
digital measurements on pins 100 through 107. Analog input
was provided by a potentiometer voltage divider circuit and a
function generator. Digital input was provided by an array of
8 dip switches. The ADC was shown to work as it was able
to measure both the 0 to 3.3V voltage divider input and the
varying sinusoidal input from the function generator with 12
bits of precision. The digital input was shown to work as the
values of 0x00 to OxFF could be reported as being measured as
would match with the current combination of the dip switches.
Though these two demonstrators it was determined that analog
and digital input were possible and set up correctly.

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL II

APPENDIX A
FINAL BLOCK DIAGRAM

uw_\lnE g——||+ zow® T
UGy P8l {] || + Ol

Suap”souoyms™dip ||+ 20140 T
snap”suoung ysnd —————||+ oldo -
IXV'S -

pen~qsn

edaa CF

0OId9 IXY
)

R - S—

IXV'S
L J
por-oidb ixe
0ld9 IXY
eser S €

7
ms~0d6 xe

suHeN IXY

0 aypen ixe

109U00IBIY| XY

(suSS £ DIW) JoleseusD soepBlu| Kiowel

P uesare
ojoiduwos g Il
Gl TR, o shs
pox0I woww RS
* Mo
W "
o Wik
o 180Uk oI -
(0111 dwer somep.
+ edaa

iouzdi userTheS
1¥dp~9zdp™piays || + zOIdo AoeHESs

IXV'S
- — =
0" seues, B

0OId9 IXY

61dp~0dp pielys || + o1do IXV's +

U J
0 o6 ke

J

<

NLISTHY 0N
M0V S0N
NLISTHY ¥ON Je)103u07 JdnuB| XY
i, RO R
0V roN P—
NLISTAV EON 180U00
. = MOV €N B
4 XY SO = Dc ohnop [0:0loul
- NLISTAY 20N I[+ rdnuen ml
+ XV 50N — —=
A e S0V 20N 07 1eou0oK
” ~ NLISTAV 10N
4 XV 20N i,
5 i oV LoN
+ XV LN — S — £
+ v oon NLISTAV 00N 0 e 1050y WalsAs J0sse001g
= s oins —
ey [o:0lupseie pouwoaseIUl 18I SAS BNGEp AW ———
[WESENY = [oi0leseifesouduied uriesarme o
hesaionas“sng uesai e
= I e
-]} W00} L seues, Bluis)
ydued xe (ezejqosonu T
[—
= (waw) ainpo Bngaq ezejgosoly
9ZE|gOIIN " N (Fp—
= J ongaa o ona3aan
SR | "wpw piezip Buppoly
r)
0 szelqoso L—— powo
Aiowew[eao] (0 eze|qosoi e T
[anowo upsar
o
T
L zmop
f—
08UUCRIRYY| XY 1959y WalSAS 10858001
. -
[o:0luieseue”fesoudud payoo| wop pIezip DAVX
NLISIV 105 © [0:0luseie euUooRL 1557SASTBngep W — P
AV L0s = [ooliesar esayduad uriesaime o alleol
NLISTHY 00N ——rd e - HoE TS
- = [p:0fiesar jonuis™sng josar o ™
10V 00N - e sbmen +
— psaiqu o™ouks Jsamols M
-~ . pixnep
NLISTUV 005 - — — (0:4 thino™duwiey |
WES 0 Seues, Bl i) noAsnq comen 4
S0V 008 . Zpnen 4
[WESENY ~ opnep +
0w |
Siov 07200 emen +
A xnep 4|
Y108 + = [0:phno euveyo men
IXY700S + i gaen +
— 10" uweRE XneooA
b 0™ WieleIUI0OA IR
UoDsBIUI WU IXe T prep 4
— 10" uweE dwey Jesn |
2men +
igd: |
paep 4
omen 4
UNTOA 4
AHES 4 -
=

] w0 shs

Josel

slxnep
pLxnep
£lxnep
ZIXnep
oLXnep
6xXnEA
[xnep
grnep
gxmep

Enlarged Block Diagram

Fig. 17.

	Arty Board and MicroBlaze
	ADC Hardware Setup
	Digital I/O Hardware Setup
	SDK and Analog and Digital Source Implementation
	Conclusion
	Appendix A: Final Block Diagram

