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Arty MicroBlaze Soft Processing System
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Daniel Wimberly, Sean Coss

Abstract—The Microblaze soft processor was set up on the Arty
Artix-7 FPGA Evaluation board to read analog and digital signals
using the Artix-7’s built-in analog-to-digital converter (ADC) and
its digital input pins. The Microblaze configuration was first set
up using Xilinx’s Vivado, then the C program to demonstrate the
ADC and digital inputs was run using Xilinx’s SDK. The output
of each signal is sent through the USART port on the board to
be displayed on a PC terminal.

I. ARTY BOARD AND MICROBLAZE

The board used for the project was the Arty board which
is a development board built around the Artix-7 FPGA. This
was developed by Xilinx for use with the MicroBlaze soft
processor which is an HDL defined processor which can be
written to the Artix-7 FPGA. The evaluation board provides
connectivity such as switches, buttons, LEDs, RGB LEDs,
Pmod connectors, shield connectors, USB, and Ethernet to
work with HDL components and those defined through the
MicroBlaze.

II. ADC HARDWARE SETUP

This procedure builds on the implementation performed
in the previous project report, titled Arty MicroBlaze Soft
Processing System Implementation Tutorial. The process for
the hardware implementation is highlighted below:

Open the previous project from Vivado SDK
Add the XADC Wizard block to the project
Add an interrupt controller to the project
Add an interrupt concatenation to the project
Add GPIO blocks to the project

Adjust added block settings

Add GPIO pins to ADC block

Create block diagram wrapper

Create pin constrains for analog pins
Generate and Export bitstream

The XADC Wizard IP was first added (Figure 1). This block
is the ADC controller - it initializes the ADC and allows it to be
used with internal and external analog inputs. Internal analog
inputs include the internal temperature reference, internal
voltage monitors, and several other system health monitors.
External pins are also connected to the ADC, and these are
what were used in the implementation.
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Fig. 1. Add XADC Wizard

The XADC Wizard has a large number of configuration
options, which can be set up both on the hardware and software
side. Here, the following settings were used in the wizard.

e Startup Channel Selection: Channel Sequencer

e Control/Status Ports: Temp Bus enabled

e ADC Calibration: No ADC Offset or Gain calibration

e Channel Sequencer: Check VP/VN, and vauxp/vauxn
pins 0, 1, 2,4,5,6,7,9, 10, 12 13, 14, 15

These settings can be seen in Figure 2 to Figure 5

Fig. 2.

XADC Wizard - Basic
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Fig. 3. XADC Wizard - ADC Setup

Fig. 5.
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The memory interface generator was previously set up to use
the ADC temperature readings for temperature compensation,
so it instantiated thee ADC. It was necessary to disable this
instantiation in the memory interface generator, then to route
the temperature output of the XADC Wizard block to the
memory interface generator.
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Fig. 6. Memory Interface Generator - Disable XADC Instantiation

Fig. 4. XADC Wizard - Alarms

After this step, the AXI Interrupt Controller was added, and



ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL II

its settings were adjusted according to Figure 7 to allow fast
interrupt logic.

4 Re-customize IP X
AXI Interrupt Controller (4.1) Pl
@ Documentation IP Location
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Basic  Advanced | Clocks
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Peripheral Interrupts Type
(@) Al ) Interrupts type - Edge or Level | OFFFFFFFF
(@) AT ) Level type - High or Low

(@) Alto ) Edge type -Rising or Falling | OFFFFFFFF

O:FFFFFFFF

Processor Interrupt Type and Connection

Interupttype Level Interrupt

Level type Adtive High v

Interrupt Output Connection | Bus

Fig. 7.  AXI Interrupt Controller Settings

Next, the shield pins 0-19 and 26-41 were added to the block
diagram from the board tab. Both shield interfaces were added
to a single AXI GPIO IP. Finally, a Concat IP was added to
concatenate the ADC interrupts with any future interrupts that
may be added. Its concatenation input number was set to 1 in
its settings.

Now that all IPs were added to the board, the board was
wired appropriately. On the XADC Wizard, each pin was first
set to be external, as shown in Figure 8. Then, the board was
wired as shown in Figure 9 (see appendices for larger version).
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Fig. 8. Make XADC Pins External

Fig. 9. System Block Diagram

Now, the Address Editor was used to assign addresses to all
of the new slave devices, as shown in Figure 10
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Diagram % | Address Editor  x
Q =/ s #

Gell Slave Interface  Base Name ~ Offsel Address  Range High Address

~ %F microblaze_0

~ M Data (32 s
== axi_gpio_sw S_AXI Reg 0x4001_0000 64K v 0x4001_FFEF
== axi_gpio_led S_AXI Reg 0x4000_0000 64K v  0x4000_FFEF
= axi_uartite_0 S_AXI Reg 84K v 0xd060_FFFF
== micrablaze_0_local_memory/dimb_bram_if_cntir  SLMB Wem 2K v 0x0000_TFFF
= mig_7series_0 5_AXI memaddr 256M v  OxSFFE_FFFF
= xadc_wiz_0 s_ax_lite Reg B4K v 0x44R0_FFFF
= ax_intc_0 s_ax Reg 0x4120_0000 64K v 0x4120_FFFF

~ = Unmapped Slaves (1

= axi_gpio_0 — ~g
Assign Address
~ B Instruction (22 2 bits
== microblaze_0_local_mer m 0x0000_0000 32K v  0x0000_7FFF
= mig_Tseries_0 imaddr 0x8000_0000 256M ~ OxE8FFF_FFFF

Exclude Segment

B} Auto Assign Address

Group by Master Interfaces

Exportto Spreadsheet.
Fig. 10. Assigning New Slave Addresses

Next, the hdl wrapper was created for the block diagram.
Creating this wrapper auto-validates the design to ensure no
errors exist.

A final step was to add pin constraints that defined which
physical FPGA pins the analog input pins were located at. To
do this, a new constraints (.xdc) file was added, and the text
shown in Figure 11. Note that in this file, the PACKAGE_PIN
represents the physical FPGA pin, and the argument of the
get_ports command is the analog pin name (Vauxi_v_n for
negative, Vauxi_v_p for positive). To ensure the pin names
are correct, it is recommended to open the hdl wrapper that
was created earlier to see what names are given to those ports,
and to make sure the pins.xdc file matches them.
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Fig. 11. Assigning Pin Constraints
At this point, the bitstream was created and exported to the
SDK for software implementation.

III. DIGITAL I/O HARDWARE SETUP

The processes for setting up the Digital I@was the exact
same as the process described in the first tutorial project in
which the AXI GPIO was set up. For this project a new AXI
GPIO module was set up and then was connected to “shield

dp0 dp19 and shield dp26 dp41” so that the AXI GPIO module
would connect to the shield pins. An image of this module is
shown in Figure 12.

axi_gpio_0

s Ax

—— s_axi_aclk

GPIO 4 ||——> shieid_dpo_dp19
GPI02 4 |||——> shieid_dp26_dp41

ip2intc_irpt

s_axi_aresetn

AXI GPIO

mig_7series_0

j+ S_AXI

device temp il11:01

{> poRr3

DDR3 +]||

Fig. 12. Digital I/O Hardware

IV. SDK AND ANALOG AND DIGITAL SOURCE
IMPLEMENTATION

The SDK implementation of the project involved the fol-
lowing steps:
e Create new application project using the latest design
wrapper and the “hello world” template
Use the xsysmon library for the ADC
Use the gpio library for digital reads
Setup ADC and GPIO ports
Reading ADC values and GPIO values
Print results over serial connection to serial monitor

To set up the code for analog and digital input, first the
right libraries had to be included. For the XADC portion
”xsysmon.h” was used and for the GPIO portion “xgpio.h”
was used. The ”xsysmon.h” contained all necessary addressing
information to select the proper registers when trying to read
ADC values. After this variables for controlling the channels
were set up. For analog input, it was desired to use the AQ
pin. In order to do this the analog ADC AUX min channel
value from “xsysmon.h” was shifted by 4 which would start
the addressing at the start of channel AO. This portion of the
code is shown in Figure 13.

// For xADC
#include <stdio.h>

#include "platform.h”
#include "xsysmon.h"

// For AXI GPIO

#include "xparameters.h”

#include “xbasic_types.h"

#include "xgpio.h"

#include “xstatus.h”

7/ XADC

#define RX_BUFFER_SIZE 7

#define xadc XPAR_SYSMON_@_DEVICE_ID
#define AG_CH XSM_CH_AUX_MIN + 4 //A0 pin

XSyshon xadc_inst;

char *channel[] = {"Temp","VECTnt","VCCAux", "VRefP","VRefN", "VBram", "AB_CH'};
//int sanple[6] = {8,1,2,4,5,6,3};
int sample[RX_BUFFER_STZE] = {XSM_CH_TEMP, XSM_CH_VCCINT, XSM_CH_VCCAUX, XSM_CH_VREFP, XSM_CH_VREFN, XSM_CH_VBRAM, A®_CH};

AXI GPIO

XGpio GpioInput;

Fig. 13. Code Preamble Section

After this the main section of the code was set up. First
to be set up in this section was the initialization for all of the
hardware. For the ADC this involved getting the configuration,
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setting the sequencer mode, disabling alarms, and channel
enables. It should be noted that one issue that occurred in
this project was caused by the sequencer mode. Example code
had this set to “safe mode” such that only internal ADC
measurements could be made. Setting this to "CONTINPASS”
allowed the ADC to take external measurements and thus al-
lowed the project to work. For the GPIO initialization involved
initializing the GPIO device associated with the shield pins and
then setting the pins to be inputs. Only I/O pins O to 19 were set
as inputs since pins O through 7 were actually used for digital
input. The code for this section can be seen in Figure 14.

Fig. 14. Code Initialization Section

The final section of the code involved reading the ADC
values and converting to voltages as well as reading the digital
input. All of these inputs that were read in were then printed to
the serial port in a form such that the raw ADC, voltage value,
and digital value could all be read and continuously updated.
This was all done in an infinite loop so that measurements
were always being made and then reported. This section of
the code is shown in Figure 15.

while(1){

xa0C
XSyston_GetStatus (xade_inst_ptr); /* Clear the old status

TIndex <RX_BUFFER_SIZE; Index++){
lon_G |_SR_EOS_MASK) 1=XSM_SR_EOS_MASK);
st.

XD dex st_ptr, A0_CH);
XADC_Buf[Index] = XSysMon_GetAdcData(xadc_inst_ptr, sample[Index]);

Voltage %f", (XADC_BUF[6]>>4),XSysMon_RawTovoltage(XADC_BUF[6]));

e %s %f\n",channel [Index], XSyston_RawTovoltage(XADC_Buf[Index]));

1
CH: %K\r\n", inl);

RESULTS %/
printf("Raw: %  Voltage %f D T/0: %62X\n\r", (XADC_Buf[6]>4),XSyson_RauToVoltage(XADC_Buf[6]),in1 &((1 << 8) - 1));

Fig. 15. Code Value Reading and Reporting Section

To set up an analog input, a voltage divider was set up
using a potentiometer which was set to a 3.3V max voltage
and then the middle wiper was connected to A0. A voltage of
3.3V was used because this was the maximum voltage that this
ADC pin could handle. Analog input was also tested using a

function generator and a sinusoidal input. A digital input was
set up using an external 8-dip switch array with the 8 switched
connected to pins 100 through IO7. Output to the serial port
was able to show that the values were being measured and
reported properly. Voltages were in the expected range of 0 to
3.3V and raw values were in the expected range of 0 to 4095
for the 12 bits of storage for each. The digital values shown
on the monitor matched the configuration of the dip switches.
An example output of this is shown in Figure 16.

Faw: 1642 Voltage 1. 202682 L I-0: 0OF
Faw: 1642 YVoltage 1.203003 o I-0: 0OF
Faw: 1g41l Voltage 1.202316 D I-0: 0OF
FHaw: 1642 Voltage 1. 202728 D I-.0: 0OF
Faw: 1641 Voltage 1.202499 o I-0: 0OF
FEaw: 1640 Voltage 1.201447 L I-.0: 0OF
Faw: 1642 Voltage 1.2028:20 o I-0: 0OF
Faw: 1643 Voltage 1. 203506 D I-.0: 8F
Faw: 1642 Voltage 1.202728 D I-0: 8F
Faw: 1642 Voltage 1.202682 o I-0: CF
Faw: 1640 Voltage 1.201584 D I-0: CF
Faw: 1643 Yoltage 1.203552 o I-0: CF
Faw: 1643 Voltage 1.203918 D I-0: CF
Faw: 1644 Voltage 1.204651 D I-.0: CF

Fig. 16. Code Value Reading and Reporting Section

V. CONCLUSION

In conclusion XADC and AXI GPIO modules were im-
plemented on an Arty board along with the Microblaze soft
processor. The steps for setting the both modules in the
Vivado software were described. After the modules were set
up and the hardware exported for working with the SDK,
code was written to set up channels, initialize hardware, take
measurements and report values from both the XADC and the
AXI GPIO modules. The XADC was set up to take analog
measurements on pin AO. The AXI GPIO was set up to make
digital measurements on pins 100 through 107. Analog input
was provided by a potentiometer voltage divider circuit and a
function generator. Digital input was provided by an array of
8 dip switches. The ADC was shown to work as it was able
to measure both the 0 to 3.3V voltage divider input and the
varying sinusoidal input from the function generator with 12
bits of precision. The digital input was shown to work as the
values of 0x00 to OxFF could be reported as being measured as
would match with the current combination of the dip switches.
Though these two demonstrators it was determined that analog
and digital input were possible and set up correctly.
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APPENDIX A
FINAL BLOCK DIAGRAM
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Enlarged Block Diagram

Fig. 17.
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