
EE 231 - Homework 7

Due Oct. 24, 2016

Do the Prelab below for Lab 8: Computer Control Unit (CCU)

Abstract

At the core of all computers is a control unit. It provides mechanisms the procedurally

stepping through instructions. When executing an instruction the computer must step trough

multiple states. The task of stepping the computer through states and generating the necessary

signals at each state is the purpose of the control unit. With some care, the system can be

configured to work through a list of instructions, rather than just one. This forms the basis of

software processors.

Prelab

Lab is nearing a first computer, but the control unit must first be built. A conceptual block diagram

of a simple computer is shown in Figure 1. In previous labs the DATA MUX, the ALU, and

required registers were already built. The control unit is a finite state machine. Its inputs are the

instruction register and the carry as well as a clock pulse and Reset. The control units outputs

are the control signals that direct the operation of the rest of the computer. The control unit can

be in one of four states: RESET, FETCH, EX1 and EX2.

• RESET is the reset state. The computer gets into this state when the Reset input is low

and stays in this state until the Reset input goes high.

• FETCH is the fetch cycle. The computer program is stored in memory. During the fetch

cycle the next instruction is fetched from memory and loaded into the instruction register

(IRX).

• EX1 is the first execution cycle. Once an instruction has been loaded into IRX, the control

unit determines the required course of action to take based on the value of IRX and the

current state of the control unit.

• EX2 is the second execution cycle. Some instructions only require one execution cycle

(EX1) while others require two (EX1, and EX2).

1. The output of the control unit depends on both the present state and the input. What type

of state machine is this?

2. Draw the state diagram for the control unit.



3. Assign op codes to each instruction in the instruction set (Table 1.) Justify your design

choices; thought now, can simplify problems later.

• To improve readability, use parameter(s) to assign values that are frequently used

in your program, e.g., op codes.

• You should also provide default values for the control signals.

4. Write a Verilog program to implement the control unit.

Figure 1: Processor Block Diagram

2



Table 1: Computer Instructions

Op.Code Instruction Operation (Mnemonic)

nop Do nothing. (No Operation)

LDDA

addr

Loads ACCA with the value in memory at address addr. C stays the

same, Z changes. (Load ACCA from memory)

LDDA IMM

#num

Loads ACCAwith num, the value in memory at the address immediately

following the LDAA #num command. C stays the same, Z changes.

(Load ACCA with an immediate)

STAA

addr

Stores the value in ACCA at memory address addr. C stays the same,

Z changes. (Store ACCA in memory)

ADDA

addr

Adds the value in memory location addr to the value in ACCA and

saves the result in ACCA. C and Z change. (Add ACCA and value in

memory)

SUBA

addr

Subtracts the value in memory location addr from the value in ACCA

and saves the result in ACCA. C and Z change. (Subtract value in mem-

ory from ACCA)

ANDA

addr

Perform a logical AND of the value in memory location addr with the

value in ACCA. Save the result in ACCA. C stays the same, Z changes.

(Logical AND of ACCA and value in memory)

ORAA

addr

Perform a logical OR of the value in memory location addr with the

value in ACCA. Save the result in ACCA. C stays the same, Z changes.

(Logical OR of ACCA and value in memory)

CMPA

addr

Compare ACCA to value in addr. This is done by subtracting the value

in addr from ACCA. ACCA does not change. C and Z change. (Com-

pares ACCA to the value in addr)

COMA Replace the value in ACCA with its one’s complement. C is set to 1 and

Z changes. (Compliment ACCA)

INCA Increment value in ACCA. C stays the same and Z changes. (INCA

ACCA)

LSLA Logical shift left of ACCA. C and Z change. (Logical shift left ACCA)

LSRA Logical shift right of ACCA. C and Z change. (Logical shift right ACCA)

ASRA Arithmetic shift right of ACCA. C and Z change. (Arithmetic shift right

ACCA)

JMP addr Jumps to the instruction stored in address addr. The PC is replaced

with addr. C and Z stay the same. (Jump)

JCS addr Jumps to the instruction stored in address addr if C = 1. If C is not

set, continue with next instruction. C and Z stay the same. (Jump if

carry set)

JCC addr Jumps to the instruction stored in address addr if C = 0. If C is set,

continue with next instruction. C and Z stay the same. (Jump if carry

not set)

JEQ addr Jumps to the instruction stored in address addr if Z = 1. If Z is not

set, continue with next instruction. C and Z stay the same. (Jump if Z

set) 3


