
EE 231 - 1 - Fall 2016

Lab 5: Registers

Introduction

In this lab investigate and build several sequential circuits. The behavior of sequen-
tial systems depends not only on the current values of the input variables, but also on
the sequence of input values that occurred in the past. Such systems have some kind
of storage of memory elements. A couple types of registers are going to be designed in
this lab.

1 Prelab

1.1. Design an eight-bit synchronous latch in Verilog.

1.2. Design an eight-bit PC register in Verilog.

1.3. Write a program which calls that above two designs to test that they function properly.

2 Lab

You will implement five different 8-bit registers: PC (Program Counter), MAR (Memory Ad-
dressing Register), OUT (Output), ACCA (Accumulator A), and IRX (Instruction Register X).
In addition, you will design two single one-bit registers: C and Z. What simple circuit
elements are C and Z?

2.1. MAR, OUT, ACCA, and IRX are all 8-bit registers with synchronous parallel load. These
registers all have a clock input, an 8-bit data input, and an active low load/enable
input, as well as an 8-bit output.

2.2. The PC is an 8-bit register with synchronous parallel load capability, synchronous
count, and an synchronous reset. The PC has a clock input, an 8-bit data input, and 3
additional (active low) inputs:

• PC Load loads the program counter.

• PC Increment increments the program counter by 1.

• Reset resets the program counter to 0.

2.3. Implement these registers (synchronous load and synchronous load/count) in Verilog.
Include each one in a higher-level design file. Use a DIP switch for the input data, and
switches on the evaluation board for PC Load, PC Increment, and PC Clock. Examine
the RTL Schematic to verify proper implementation.

2.4. Verify that the load function works correctly for the parallel load register and that
both the load and increment functions work correctly for the load/increment register.



EE 231 - 2 - Fall 2016

3 Supplement: Registers

A register is a collection of flip-flops which are operated as a set, rather than as individuals
(The Electrical Engineering Handbook, CRC Press). Two specific examples of registers are
discussed in the following sub-sections.

3.1 Simple Latch

Shown in Figure 1, the device takes D In, Clock, and Load as inputs; it returns D Out as
an output. On an edge of the clock values in D In will be read, and if load is active used to
set the value of D Out, otherwise the value of D Out will remain, unchanged.

• Indicated by the absence of a bubble, the device is sensitive to rising edges.

• Indicated by the bubble, Load is active-low. Only when Load is active (low) can a new
value be read into the register, otherwise the previous value is held (kept).

Register

LClock

D_In

Load

D_Out

Figure 1: Simple Register/Latch

3.2 Program Counter

Another type of register is called a program counter (PC). It tracks which instruction in
memory to execute, and must provide the functionality discussed below.

• The program counter needs to know where to start from. It must initialize itself to
a specific value when it gets reset. In this case, the program counter should be reset
to zero to start execution at the first instruction of the program. This behavior is
controlled by the Reset line.

• Programs are, usually, executed sequentially. After executing the instruction at ad-
dress 0x0123, the program will execute the instruction at address 0x0124. As such,
the PC needs to support incrementation. This behavior is controlled by the Increment
line.

• Other times, the program needs to execute code in a different area of memory (jump
around). Flow control statements such as for and while do this. In these cases, the
PC needs to support being loaded with a new (specified) address. This behavior is
controlled by the Load line.



EE 231 - 3 - Fall 2016

PC

I
Clock

D_In

Increment

D_Out

L R

Load

Reset

Figure 2: Program Counter (PC) Register

Specifically, the Program Counter used in this lab (Figure 2) should behave as follows:

3.2.1. The PC should increment D Out to D Out + 1 on the rising edge of Clock.

3.2.2. When Load is low, the input data D In should be latched into the register on the rising
edge of Clock.

The system, which controls PC, will ensure that Load and Increment are never low at
the same time. In your program, you should have PC do something sensible, such as
latch D In, if both happen to be low simultaneously.

3.2.3. When Reset is low, PC should reset to 0x00 on the next clock edge.

This is normally called an synchronous counter with synchronous load and synchronous
reset. Note: From the bubbles we know the control lines are active low, they should be held
high until needed.


	Prelab
	Lab
	Supplement: Registers
	Simple Latch
	Program Counter


