
EE 231 - 1 - Fall 2016

Lab 8: Computer Control Unit (CCU)

Introduction

At the core of all computers is a control unit. It provides mechanisms the proce-
durally stepping through instructions. When executing an instruction the computer
must step trough multiple states. The task of stepping the computer through states
and generating the necessary signals at each state is the purpose of the control unit.
With some care, the system can be configured to work through a list of instructions,
rather than just one. This forms the basis of software processors.

1 Prelab

Lab is nearing a first computer, but the control unit must first be built. A conceptual block
diagram of a simple computer is shown in Figure 1. In previous labs the DATA MUX, the
ALU, and required registers were already built. The control unit is a finite state machine.
Its inputs are the instruction register and the carry as well as a clock pulse and Reset. The
control unit’s outputs are the control signals that direct the operation of the rest of the
computer. The control unit can be in one of four states: RESET, FETCH, EX1 and EX2.

• RESET is the reset state. The computer gets into this state when the Reset input is
low and stays in this state until the Reset input goes high.

• FETCH is the fetch cycle. The computer program is stored in memory. During the fetch
cycle the next instruction is fetched from memory and loaded into the instruction
register (IRX).

• EX1 is the first execution cycle. Once an instruction has been loaded into IRX, the
control unit determines the required course of action to take based on the value of IRX
and the current state of the control unit.

• EX2 is the second execution cycle. Some instructions only require one execution cycle
(EX1) while others require two (EX1, and EX2).

1.1. The output of the control unit depends on both the present state and the input. What
type of state machine is this?

1.2. Draw the state diagram for the control unit.

2 Lab

2.1. Assign op codes to each instruction in the instruction set (Table 1.) Justify your
design choices; thought now, can simplify problems later.

• To improve readability, use parameter(s) to assign values that are frequently
used in your program, e.g., op codes.

• You should also provide default values for the control signals.



EE 231 - 2 - Fall 2016

2.2. Write a Verilog program to implement the control unit.

2.3. Simulate the control unit. What happens when Reset is low? Test with different
values for IRX and check that the control unit cycles through the appropriate states
for that instruction and that the control signals are what you expect. Test the JCS

command when the carry is set and when the carry is not set.

3 Supplement: Control Signals

The outputs of the control unit are the control signals shown on the block diagram (Fig-
ure 1). Except for Alu Ctrl and Addr Mux Sel, all of these signals are active low. In your
Verilog code you will activate the appropriate signals at the correct times to implement the
instruction the control unit is executing.

System

Control Processor

ADDR_MUX
0xFF

PC

MAR

IRX

ACCA

ALU

Z C

Alu_Ctrl

Z_Load

C_Load

Z
C

ACCA_Load

PC_Inc
PC_Load

MAR_Load

IR_Load

INST
Addr_Mux_Sel

Memory

MEM_W

Data Out

Data In

Output Port

Figure 1: Processor Block Diagram

During the FETCH cycle, the control unit will fetch the next instruction from memory to
determine what instruction it should execute. Thus, the FETCH cycle will be the same for
all instructions where it will read the instruction from memory and latch it into the IRX

register. To do this, IR Load and PC Inc should be active (low), and Addr Mux Sel should
be set to select the address from the program counter PC.



EE 231 - 3 - Fall 2016

With the control lines set up like this the address to the memory will be from the PC

which is the address of the next instruction to execute, and the memory output enable line
will be active (low). The memory will put the data at that address on its output lines, which
are the input lines to the IRX register. On the next clock edge, the data from memory will
be latched into the IRX register, and the PC will be incremented to the next memory address.
What the control unit does next will depend on the data loaded into the IRX register. Three
examples are discussed in the Supplement (Section 4.)

4 Supplement: Code Execution

4.1 Example 1

Consider the instruction LDAA addr where addr = 0xF5. We will further assume that the
instruction is in memory address 0x80 and 0x81, and that the code for LDAA addr is 0x01.

Table 2: Example Program 1: RST State

PC Memory Address Memory Data
→ 0x80 0x01

0x81 0xF5

0x82 Next
IRX = ?
MAR = ?

FETCH: During the fetch cycle the instruction register must be loaded with the instruction
operational (op.) code, 0x01. To do this the Addr Mux Sel must select the PC as the address
source and the memory address 0x80 must be read which causes its value to be placed on
the Data lines. The value on the Data lines must be latched into IRX, and the PC must be
incremented. Thus during FETCH you should have PC Inc, IR Load and Addr Mux Sel.

Table 3: Example Program 1: FETCH State

PC Memory Address Memory Data
0x80 0x01

→ 0x81 0xF5

0x82 Next
IRX = 0x01 (LDAA addr op code)
MAR = ?

EX1: During EX1, you must read the memory address that the PC is pointing at. By
reading address 0x81 the value 0xF5 is placed on the Data line. Then 0xF5 needs to be
stored in the MAR register. Finally, the program counter should be incremented. Thus during
EX1 you should have PC Inc and MAR Load active, and Addr Mux Sel set to PC. After these
steps the situation should be as shown in Table 4.



EE 231 - 4 - Fall 2016

Table 4: Example Program 1: EX1 State

PC Memory Address Memory Data
0x80 0x01

0x81 0xF5

→ 0x82 Next
IRX = 0x01 (LDAA addr op code)
MAR = 0xF5

EX2: Now that MAR contains the value 0xF5, the multiplexer should select MAR as the
source of the address. This address should then be read which causes the memory contents
of address 0xF5 to be placed onto the Data line. Then the ALU can load this value into
ACCA. During EX2 you should have ACCA Load active, Addr Mux Sel set to MAR, and ALU Ctrl

set to LOAD. When the control lines are set up like this, the value of 0xF5 will be on the
address lines of the memory unit, and the data lines out of the memory will contain the data
in address 0xF5. This data will be passed through the ALU to the input of ACCA.

On the next clock cycle, the value will be latched into ACCA. Note that you do not want
PC Inc active because PC is already pointing to the next instruction to be executed.

4.2 Example 2

The next instruction in the program is LDAA #num where #num = 0xF5. This instruction
translates as “load ACCA with the value F5.” Assume the op code for LDAA # is 0x02. Before
the program begins, the situation is as below:

Table 5: Example Program 2: RST State

PC Memory Address Memory Data
→ 0x82 0x02

0x83 0xF5

0x84 Next
IRX = ?
MAR = ?

FETCH: The fetch cycle is the same for this command as it was in Example 1 (Section 4.1.)
After the fetch cycle the situation should be:

Table 6: Example Program 2: FETCH State

PC Memory Address Memory Data
0x82 0x02

→ 0x83 0xF5

0x84 Next
IRX = 0x02 (LDAA #num op code)
MAR = ?



EE 231 - 5 - Fall 2016

EX1: During the EX1 cycle the PC is pointing at memory address 0x83. By reading this
address, the value 0xF5 is placed on the Data line. ACCA Load and PC Inc, should be active,
Addr Mux Sel should be set to select PC, and the ALU Ctrl lines should select the function
which loads ACCA. When the control lines are set up like this, the value 0x83 will be on the
address lines of the memory unit, and the data lines out of the memory unit will contain the
data in address 0x83 (which in this example is 0xF5). This data will be passed through the
ALU to the input of ACCA. On the next clock cycle the data will be latched into ACCA.

There is no EX2 cycle.

4.3 Example 3

The next instruction in the program is JMP addr where addr = 0xF5. Assume the op code
for JMP addr is 0x12. Before the program begins, the situation is as below:

Table 7: Example Program 3: RST State

PC Memory Address Memory Data
→ 0x84 0x12

0x85 0xF5

0x86 Next
IRX = ?
MAR = ?

FETCH: The fetch cycle is the same for this command as it was in Example 1 (Section 4.1.)
After the fetch cycle the situation should be:

Table 8: Example Program 3: FETCH State

PC Memory Address Memory Data
0x84 0x12

→ 0x85 0xF5

0x86 Next
IRX = 0x12 (JMP addr op code)
MAR = ?

EX1: During the EX1 cycle the PC is pointing at memory address 0x85. By reading
this address, the value 0xF5 is placed on the Data line. PC Load should be active, and
Addr Mux Sel should be set to select PC. When the control lines are set up like this, the
value 0x85 will be on the address lines of the memory unit, and the data lines out of the
memory unit will contain the data in address 0x85 (which in this example is 0xF5). This
data will be on the input lines to PC. On the next clock cycle the data will be latched into
PC. There is no EX2 cycle.

Note: When making conditional jumps, be sure to increment the Program Counter (PC)
if the jump is not executed. Otherwise, the address will be interpreted (undesiredly) as the
next instruction to be executed.



EE 231 - 6 - Fall 2016

Table 1: Computer Instructions

Op.Code Instruction Operation (Mnemonic)

nop Do nothing. (No Operation)

LDDA addr Loads ACCA with the value in memory at address addr. C stays the
same, Z changes. (Load ACCA from memory)

LDDA IMM

#num

Loads ACCA with num, the value in memory at the address imme-
diately following the LDAA #num command. C stays the same, Z

changes. (Load ACCA with an immediate)

STAA addr Stores the value in ACCA at memory address addr. C stays the same,
Z changes. (Store ACCA in memory)

ADDA addr Adds the value in memory location addr to the value in ACCA and
saves the result in ACCA. C and Z change. (Add ACCA and value in
memory)

SUBA addr Subtracts the value in memory location addr from the value in ACCA

and saves the result in ACCA. C and Z change. (Subtract value in
memory from ACCA)

ANDA addr Perform a logical AND of the value in memory location addr with the
value in ACCA. Save the result in ACCA. C stays the same, Z changes.
(Logical AND of ACCA and value in memory)

ORAA addr Perform a logical OR of the value in memory location addr with the
value in ACCA. Save the result in ACCA. C stays the same, Z changes.
(Logical OR of ACCA and value in memory)

CMPA addr Compare ACCA to value in addr. This is done by subtracting the
value in addr from ACCA. ACCA does not change. C and Z change.
(Compares ACCA to the value in addr)

COMA Replace the value in ACCA with its one’s complement. C is set to 1
and Z changes. (Compliment ACCA)

INCA Increment value in ACCA. C stays the same and Z changes. (INCA
ACCA)

LSLA Logical shift left of ACCA. C and Z change. (Logical shift left ACCA)

LSRA Logical shift right of ACCA. C and Z change. (Logical shift right
ACCA)

ASRA Arithmetic shift right of ACCA. C and Z change. (Arithmetic shift
right ACCA)

JMP addr Jumps to the instruction stored in address addr. The PC is replaced
with addr. C and Z stay the same. (Jump)

JCS addr Jumps to the instruction stored in address addr if C = 1. If C

is not set, continue with next instruction. C and Z stay the same.
(Jump if carry set)

JCC addr Jumps to the instruction stored in address addr if C = 0. If C is
set, continue with next instruction. C and Z stay the same. (Jump
if carry not set)

JEQ addr Jumps to the instruction stored in address addr if Z = 1. If Z is not
set, continue with next instruction. C and Z stay the same. (Jump
if Z set)


	Prelab
	Lab
	Supplement: Control Signals
	Supplement: Code Execution
	Example 1
	Example 2
	Example 3


