
EE 231 - 1 - Fall 2016

Lab 9: Build a Computer

Introduction

A conceptual block diagram of a simple computer is shown in Figure 1. In pre-
vious labs the Addr Mux, the ALU, the Control Unit (CCU) and the required registers
were already designed. In this lab all the components will be put together to build a
computer. The only missing block is the memory block which can be found here. Also
needed is, the mem init.v file in which program code is to be inserted. Use graphical
design to implement the computer as shown in Figure 1. Instructions on how to do
such are provided.

System

Control Processor

ADDR_MUX
0xFF

PC

MAR

IRX

ACCA

ALU

Z C

Alu_Ctrl

Z_Load

C_Load

Z
C

ACCA_Load

PC_Inc
PC_Load

MAR_Load

IR_Load

INST
Addr_Mux_Sel

Memory

MEM_W

Data Out

Data In

Output Port

Figure 1: Processor Block Diagram

1 Prelab

1.1. Using the instruction set provided in the Table 1, write a computer program to generate
running lights. One way to accomplish this is to start with an 8-bit number 0000 0001

(where the one represents the LED that would be off). Then left shift that number;
once you have reached the end, jump back to the beginning of the program. Figure 2
shows the expected output at different time steps.



EE 231 - 2 - Fall 2016

1.2. Using the graphical method as shown in Section 3, design and build the entire com-
puter.

Step Led 0 Led 1 Led 2 Led 3 Led 4 Led 5 Led 6 Led 7

1

2

3

4

5

6

7

8

9 Repeat Starting at 1

Figure 2: Running Lights LED Sequence

2 Lab

2.1. Enter your running light program into the mem init.v file.

2.2. Simulate the computer you have created in the prelab.

2.3. Run your code on your board.

3 Supplement: Graphical Design of Processor

3.1. Start a new project and include the mem block.v.

3.2. Include the other modules you need for this lab (e.g. the ALU.)

3.3. Create graphical symbols for each module

3.3.1. While in the “implementation” view, and on the “Design” tab, click on your
desired module (Listed in the “Hierarchy” panel).

3.3.2. Then, In the “Processes” panel, below, expand the “Design Utilities” tree.

3.3.3. Under this tree is the “Create Schematic Symbol” menu item, double-click it.

3.3.4. Only the first module will generate a symbol, but all the subsequent modules will
show as created. Select the missing module(s) and right-click “Create Schematic
Symbol” and choose “ReRun.”

3.4. Create a new file, as you would create a new Verilog file, and choose “Schematic.”
Once the file is created, the Schematic editor should load.



EE 231 - 3 - Fall 2016

3.5. Navigate the left-panel to the “Symbols” tab, and choose the category labelled as your
project directory.

3.6. Click on modules as needed, then place them in the schematic by clicking where you
want them.

3.7. When ready, find the “Add wire” tool in the vertical toolbar and connect the modules.

Appendix



EE 231 - 4 - Fall 2016

Table 1: Computer Instructions

Op.Code Instruction Operation (Mnemonic)

nop Do nothing. (No Operation)

LDDA addr Loads ACCA with the value in memory at address addr. C stays the
same, Z changes. (Load ACCA from memory)

LDDA IMM

#num

Loads ACCA with num, the value in memory at the address imme-
diately following the LDAA #num command. C stays the same, Z

changes. (Load ACCA with an immediate)

STAA addr Stores the value in ACCA at memory address addr. C stays the same,
Z changes. (Store ACCA in memory)

ADDA addr Adds the value in memory location addr to the value in ACCA and
saves the result in ACCA. C and Z change. (Add ACCA and value in
memory)

SUBA addr Subtracts the value in memory location addr from the value in ACCA

and saves the result in ACCA. C and Z change. (Subtract value in
memory from ACCA)

ANDA addr Perform a logical AND of the value in memory location addr with the
value in ACCA. Save the result in ACCA. C stays the same, Z changes.
(Logical AND of ACCA and value in memory)

ORAA addr Perform a logical OR of the value in memory location addr with the
value in ACCA. Save the result in ACCA. C stays the same, Z changes.
(Logical OR of ACCA and value in memory)

CMPA addr Compare ACCA to value in addr. This is done by subtracting the
value in addr from ACCA. ACCA does not change. C and Z change.
(Compares ACCA to the value in addr)

COMA Replace the value in ACCA with its one’s complement. C is set to 1
and Z changes. (Compliment ACCA)

INCA Increment value in ACCA. C stays the same and Z changes. (INCA
ACCA)

LSLA Logical shift left of ACCA. C and Z change. (Logical shift left ACCA)

LSRA Logical shift right of ACCA. C and Z change. (Logical shift right
ACCA)

ASRA Arithmetic shift right of ACCA. C and Z change. (Arithmetic shift
right ACCA)

JMP addr Jumps to the instruction stored in address addr. The PC is replaced
with addr. C and Z stay the same. (Jump)

JCS addr Jumps to the instruction stored in address addr if C = 1. If C

is not set, continue with next instruction. C and Z stay the same.
(Jump if carry set)

JCC addr Jumps to the instruction stored in address addr if C = 0. If C is
set, continue with next instruction. C and Z stay the same. (Jump
if carry not set)

JEQ addr Jumps to the instruction stored in address addr if Z = 1. If Z is not
set, continue with next instruction. C and Z stay the same. (Jump
if Z set)


	Prelab
	Lab
	Supplement: Graphical Design of Processor

