1. Design a minimum-cost SOP circuit that implements a three-variable majority function.
2. Design the simplest circuit that implements the function $\mathrm{f}=\mathrm{A} \oplus \mathrm{B} \oplus \mathrm{C}$ using NOR gates.
3. Implement the function $\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2)=\sum \mathrm{m}(0,3)$ using a 2-to-4 binary decoder and an OR gate.
4. Implement the function $\mathrm{f}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right)=\overline{\mathrm{w}}_{1} \overline{\mathrm{w}}_{3}+\mathrm{w}_{1} \mathrm{w}_{2}+\mathrm{w}_{1} \mathrm{w}_{3}$ using a 4-to-1 Mux and other gates. Use w_{1} and w_{2} as selectors.
