EE 231 - Homework 10

1. Consider the timing diagram below. Assuming that the D and $C l o c k$ inputs shown are applied to the adjunct circuit, draw waveforms for the Q_{a}, Q_{b}, and Q_{c} signals. Assume that the initial values for the flip-flops are $Q_{a}, Q_{b}, Q_{c}=0,0,0$.

Qb \qquad

Qc

2. Describe the counting sequence of a T-flip-flop circuit with the following interconnections. Assume that the initial values of the flip-flops are $\left\{Q_{3} Q_{2} Q_{1} Q_{0}=1001\right\}$
$T_{3}=Q_{3} \cdot Q_{0}+Q_{2} \cdot Q_{1} \cdot Q_{0}, \quad T_{2}=Q_{1} \cdot Q_{0}, \quad T_{1}=\overline{Q_{3}} \cdot Q_{0}, \quad T_{0}=1$.
3. The program shown below describes a counter in Verilog. Assume that the initial values for the flip-flops are $\mathrm{Q} 0, \mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 3=0,0,0,0$. What is the counting sequence implemented by the code?

```
module counter(Clk, Resetn, Q);
    input Clk, Resetn;
    output reg [3:0] Q;
    always@(posedge Clk, negedge Resetn)
    if(!Resetn)
        Q<=0;
    else begin
        Q[3:1] <= Q[2:0];
        Q[0] <= ~ Q [3];
    end
endmodule
```

4. Derive a state diagram and a state table for a FSM that has an input \mathbf{w} and an output \mathbf{z}, such that when pulses are applied to \mathbf{w},
(a) the output $\underline{\mathbf{z}=\mathbf{0}}$ if the number of previously applied pulses is odd, and
(b) the output $\underline{\mathbf{z}=1}$ if the number of applied pulses is even.
5. Design a 2-bit synchronous binary counter using D flip-flops, and find its maximum operating frequency. Assume the following timing parameters for the flip-flops: tsu $=0.6 \mathrm{~ns}, \mathrm{th}=0.4 \mathrm{~ns}$, and 0.8 tcQ 1.0 ns , and that the delay through any logic gates can be calculated as $1+0.1 \mathrm{k} \mathrm{ns}$, where k is the number of inputs
