Timing Analysis with Clock Skew A variation in the arrival time of a clock signal at different flip-flops is called clock skew, $t_{\text {skew }}$. For The circuit below, assume that:

$$
t_{s u}=0.6 \quad n s, \quad t_{h}=0.4 \quad n s, \quad \text { and } \quad 0.8 \leq t_{c Q} \leq 1.0 \quad n s
$$

Assume that the clock signal arrives at flip-flops Q_{0}, Q_{1}, and Q_{2} simultaneously, but that there is a delay in the arrival of the clock signal at flip-flop Q_{3}.

1. The critical path through the circuit is from flip-flop Q_{0} to Q_{3}. However, the clock skew at Q_{3} has the effect of reducing this delay, because it provides additional time before data is loaded into this flip-flop. Thus, taking a clock skew of $t_{\text {skew }}=1.5 \mathrm{~ns}$ into account, the delay of the path from flip-flop Q_{0} to Q_{3} is given by

$$
t_{c Q}+3\left(t_{A N D}\right)+t_{X O R}+t_{\text {su }}-t_{\text {skew }}=4.9 \quad n s
$$

which in turn increases the maximum clock operating frequency.
Can we come up with a (better than the authors') explanation of why the delay reduction occurs?
2. Since the loading of data into flip-flop Q_{3} is delayed by the clock skew, it has the effect of increasing the hold time requirement of this flip-flop to

$$
t_{h}+t_{\text {skew }}(=1.9 n s)
$$

for all paths that end at Q_{3} but start at Q_{0}, Q_{1}, or Q_{2}. The shortest such path in the circuit is from flip-flop Q_{2} to Q_{3} and has the delay

$$
t_{c Q}+t_{A N D}+t_{X O R}=0.8+1.2+1.2=3.2 \quad n s
$$

(which is still larger than 1.9 ns . so, no hold time violation occurs.)
Can we come up with a (better than the authors') explanation for the increase in the hold time requirement?
3. Finally, If we repeat the above hold time analysis for clock skew values

$$
t_{\text {skew }} \geq 3.2-t_{h}=2.8 \quad n s
$$

then hold time violations will exist. Thus, if $t_{\text {skew }} \geq 2.8 n s$ the circuit will not work reliably at any clock frequency. Why is it so?

