
EE 231 - 1 - Fall 2018

Lab 1: Introduction to Verilog HDL and the Vivado ISE

Introduction

In this lab simple circuits will be designed by programming a field-programmable
gate array (FPGA). At the end of the lab an understanding of the process of program-
ming a programmable logic device (PLD) should be attained, as well as an understand-
ing of the advantages of such an approach over using discrete components.

1 Prelab

1.1. Read the material provided in the supplements (Sections 3, 4, 5.)

1.2. What is a half adder? Explain in terms of input and output signals.

1.3. Using the schematics of the board (Figure 1), if the FPGA sends a logic 1 to one of the
LEDs (1-4) would it turn on or off? What about one of the RGB LEDs? (LED0 R,
LED0 G, LED0 B)

LD1LD3LD4 LD2

330

LED	1

330

LED	2

330

LED	3

330

LED	4

GND

100

LED_0_B
182

LED_0_G

LED_0_R

182 LD0_R

LD0_G

LD0_B

E2

E1

K1

J1

F1

D3

F2
10K

BTN_0
D2

10K

BTN_1

Vss

3.3V

10K10K

GND

Vss

3.3V

D1

CMOD	Spartan	-	7

Figure 1: CMOD Spartan 7 LEDs and Buttons

2 Lab

2.1. Write a gate level Verilog program to implement the half adder circuit in Figure 2.

2.2. Assign the two inputs (X and Y) to be the two push buttons on the board and the two
outputs (S and C) to be two of the LEDs on the board. Before you continue, ask
the TA to check your assignment.

EE 231 - 2 - Fall 2018

S

C

X
Y

Figure 2: Half Adder Circuit

2.3. Perform both functional (Behavioral) and timing (Post-Implementation) simulations.
The simulations can be validated later with the Logic Analyzer, or in this case with a
simple push-button test Print your waveforms. Are the two waveforms the same?
Discuss.

2.4. Write a Verilog program to implement the same half adder circuit using dataflow
modeling and simulate your circuit again. Note: you don’t have to specify your
waveforms as you have already saved them in a file.

2.5. Program your PLD (be sure to have the correct device selected) to implement your
circuit and verify that it works. Ask the TA to initial your lab book once you
have it working.

2.6. Use vectors to describe the inputs and outputs to a half-adder. Again, use either gate
level or dataflow programming (user choice) to describe the circuit. Compile code,
verify simulations, and upload the FPGA board.

EE 231 - 3 - Fall 2018

3 Supplement: Verilog

An introduction to Verilog HDL is discussed in the sections to follow.

3.1. In order to write a Verilog HDL description of any circuit you will need to write a
module, which is the fundamental descriptive unit in Verilog. A module is a set of text
describing your circuit and is enclosed by the key words module and endmodule.

3.2. As the program describes a physical circuit, you will need to specify the inputs, outputs,
behavior of the circuit (gates, etc.), wires, and how each of the gates are wired. To
accomplish this you need the keywords input, output, and wire to define the inputs,
outputs, and the wiring between the gates, respectively.

3.3. There are multiple ways to model a circuit:

• Gate level modeling

• Dataflow modeling

• Behavioral modeling

• A combination of the above

3.4. A simple program modeling a circuit (Figure 3) at the gate level is described below as
Listing 1. The same program is then modeled again in Listing 2, using dataflow.

Figure 3: Simple Modeled Circuit

Listing 1: Simple Program in Verilog Modeling a Circuit at the Gate Level
1 module simple_circuit(output D,E, input A,B,C);

2 wire w1; // Creating a virtual wire

3 and G1(w1,A,B); // Creates AND gate with output w1 and inputs A and B

4 not G2(E,C); // Creates NOT gate output E and input C

5 or G3(D,w1,E); // Creates OR gate with output D and inputs w1 and E

6 endmodule

Listing 2: Simple Program in Verilog Modeling a Circuit using Dataflow
1 module simple_circuit(output D,E, input A,B,C);

2 wire w1; // Creating a virtual wire

3 assign w1 = A & B; // Creates AND gate with output w1 and inputs A and B

4 assign E = ~C; // Creates NOT gate output E and input C

5 assign D = w1 | E; // Creates OR gate with output D and inputs w1 and E

6 endmodule

EE 231 - 4 - Fall 2018

3.5. As seen above, the outputs come first in the port list followed by the inputs.

• Single line comments begin with //

• Multi-line comments are enclosed by /*...*/

• Verilog is case sensitive

Code Commenting and Formatting: Clear commenting and formatting within
your code is very important! Well written code is easy to look at and even easier to
debug/fix later. Hint: The TAs will help you more if your code is not well written!!
The following are tips for well written, user friendly code:

• Single line comments should be clear and concise, describing each line’s func-
tion/use.

• Multi-line comment blocks should be used for describing complex sections of code,
possibly separating blocks of code, describing the “.v” file with useful information
(Author, Function, School, Class, etc.).

• Use formatting to your advantage! Space variables and comments over so they
are in even columns. (see example code (Listing 3) lines 6-11 & 17-22)

• Use tabbing to your advantage! Tab over when in blocks of code, such as modules,
if/else/case statements, etc.

Listing 3: Both bad & good code formatting and commenting
1 /* This type of comment block is quick to make, but isn’t very pretty...

2 Things to notice about the bad_format_and_comment module:

3 -no comment for module line -each term within the module is not tabbed over

4 -single space after each type, before name -single space name, before comment

5 -general comments for each line, do not comment on what purpose the line serves */

6 module bad_format_and_comments(output D,E, input A,B,C);

7 wire w1; // Create wire

8 and G1(w1,A,B); // AND gate

9 not G2(E,C); // NOT gate

10 or G3(D,w1,E); // OR gate

11 endmodule

12
13 ///

14 // This type of large comment block looks pretty, but takes more typing and time...

15 // Notice the same code from above formatted and commented well.

16 ///

17 module good_fmt_and_commts(output D,E, input A,B,C); // This comment outlines the purpose of module

18 wire w1; // Creating a virtual wire

19 and G1(w1,A,B); // Creates AND gate with output w1 and inputs A and B

20 not G2(E,C); // Creates NOT gate output E and input C

21 or G3(D,w1,E); // Creates OR gate with output D and inputs w1 and E

22 endmodule

EE 231 - 5 - Fall 2018

3.1. You can use identities describing multiple bits known as vectors. Given an identifier
[7:0] Input X you can assign values by:

1 assign [7:0] Input_X = 8’b00001111;

where the 8’b specifies that we are defining an 8-bit binary number and 00001111 is
that 8-bit binary number. You can also assign parts of the number as:

1 assign [2:0] Input_X = 3’b101;

Which assigns only to bits 2-0 of Input X.

4 Supplement: Writing Bad Code

A discussion of poor and incorrect coding practices will follow, with emphasis on how to
correct the mistakes. For purposes of discussion the ill-written code in Listing 4 will be
discussed.

Listing 4: Example of Bad Code
1 module Bad code(ABCD,EF);

2 wire1; Define Wire

3 assign w1=C // Assign W1 to input C;

4 asign D = A & B; // Assign D as OR gate with C, A

5 aign E = B | C; /XOR gate

6 assign F = A ^ 1w; // AND gate

7 end modules

4.1. The first line of Bad Code (Listing 4) can either be revised to Listing 5 or Listing 6.

Listing 5: Revision I of Bad Code (Line 1)

1 module BadCode(input A,B,C, output D,E,F);

Listing 6: Revision II of Bad Code (Line 1)

1 module BadCode(A,B,C,D,E,F);

2 input A,B,C;

3 output D,E,F;

4.2. The first line of Bad Code (Listing 4) is necessary when using input and output vari-
ables inside a module. Wires (which are neither inputs, nor outputs) should be defined
as seen in Listing 7:

Listing 7: Definition of Wires

1 wire w1;

EE 231 - 6 - Fall 2018

4.3. Whenever a variable (wire) is being given a value, The assign keyword must precede
the variable being set and the associated logic. Revision of Bad Code (Listing 4) lines
3-6 can be seen in Listing 8.

Listing 8: Proper Usage of Assign Operator

1 assign w1 = C; //Assign w1 as C;

2 assign D = A & B; // Assign D as AND of A, B

3 assign E = C | B; // Assign E as OR of B, C

4 assign F = A ^ w1; // Assign F as XOR of A, w1

4.4. The module should be closed with the endmodule keyword. A proper revision of the
code from Listing 4 is as follows in Listing 9:

Listing 9: Corrected Implementation of Bad Code

1 module BadCode(input A, B, C, output D, E, F);

2 wire w1; // Define Wire

3 assign w1 = C; // Assign W1 to input C

4 assign D = A & B; // Assign D as AND of A, B

5 assign E = B | C; // Assign E as OR of B, C

6 assign F = A ^ w1; // Assign F as XOR of A, w1

7 endmodule

5 Supplement: Vivado

In order to implement the circuits that you will design on the FPGA, there are a few key
steps.

5.1 Open Vivado and Start a new Project

5.1.1. Open Vivado FPGA Programming software.

5.1.2. Select “Quick Start” then choose “Create Project” , then “Next”.

5.1.3. Set the name of the project. Make the name descriptive, not just lab name (e.g. Lab 1)
but Lab 1 HalfAdder.

5.1.4. Set the “Working Directory.” This should be a folder to contain all of your projects.
Make sure to place this folder in an area that you own. (USB flash drive,
NMT geek drive, etc.) A sub-folder of the same name as the project will be created
for the project to work within. Select “Next” for the next menu.

5.1.5. Select “RTL Project” then choose “Next”.

5.1.6. Add a source file. Select “Create File” then ensure that Verilog code is specified, and
name your module file. Once created, ensure that “Target language” and “Simulator
language” are set to Verilog. Select “Next” to continue.

5.1.7. Select “Next” to continue to board selection after the constraints page.

EE 231 - 7 - Fall 2018

5.1.8. Specify the device that you are using. The FPGA we are using is as follows:

• Category: All

• Family: Spartan-7

• Package: csga225

• Speed: -1

• Part: xc7s25csga225-1 (Should be 3rd choice)

5.1.9. Select the board, then Select “Next” to see a project summary, followed by “Finish”

5.2 Writing the Code

5.2.1. Once open, Vivado will open a “Define Module” prompt. Feel free to add any in-
puts/outputs now, or close to add them later. This Prompt will just pre-fill the new
module with inputs/outputs in advance.

5.2.2. Select the newly created module in Project Manager → Sources → Design Sources →
“Module name.v”. This opens your file and this is where you will edit the file to create
the desired circuit.

Now you are ready to type in your program.

5.3 Simulating the Designed Circuit

0 ns 1 ns 2 ns 3 ns 4 ns 5 ns 6 ns 7 ns

Figure 4: Functional Simulation

Simulation is a synthetic test of functionality such as seen in Figure 4. It is used to
validate portions of designs prior to moving them to hardware, which can be a costly and
time consuming process. Instead, first a design is validated using models and simulations,
then final development is carried out on discrete hardware.

There are two types of modes that we are concerned with:

1) Behavioral (Functional): We are not worried about any delays and we are just looking
to make sure that the circuit is working correctly. (correct input/output logic)

2) Timing (Post-*): Simulating the circuit and how it would possibly run on actual
hardware (FPGAs). This includes any delays from gates in the circuit.

First perform the functional simulation to verify correct logic implementation, and then
perform the timing simulation to look at the timing of the circuits’ signals.

EE 231 - 8 - Fall 2018

When simulating the circuit you need to figure out what waveforms are needed for the
inputs that will ensure that your circuit works properly. If you have a simple circuit, you
can easily test all the possibilities. As the circuits get more and more complicated you will
need to figure out a scheme to verify their operation. In simulating your circuit there are
four main steps, and they are as follows:

• Create a “Verilog Test Fixture/file”

• Specify a waveform for each input.

• Run the simulation to generate the output for verification.

• Verify results are consistent with what is expected.

These steps can be achieved according to the following steps:

5.3.1. Right-Click in the “Sources”, and choose “Add Source” (the “+” icon).

5.3.2. Choose “Add or Create simulation sources”, then “Next”.

5.3.3. Choose “Create File”, ensure Verilog is selected, and specify a file name (ex. Test Half Adder)
Select “Finish” to continue.

5.3.4. Once created, Vivado will open a “Define Module” prompt. Feel free to add any
inputs/outputs now, or close to add them later. This Prompt will just pre−fill the
new module with inputs/outputs in advance.

5.3.5. Open the test file, note the first line is a time-scale shown as length of time unit/
simulator precision. Modify the first line of code to reflect a more accurate operational
frequency. Such an example is seen in Listing 10.

Listing 10: Verilog Time Scale

1 ‘timescale 10ns / 1ps

5.3.6. The “Test Fixture/file” is a full Verilog environment, but the simplest way to use it
is to specify the input values, and how long to wait before changing them (in integer
multiples of the major time unit) inside an always block, seen below in Listing 11.

EE 231 - 9 - Fall 2018

Listing 11: Brute-Force Assignment within Verilog Test Fixture

1 module Test_Simulation_half_adder();

2 // Inputs ///

3 reg A; // Input Bit A

4 reg B; // Input Bit B

5
6 // Outputs //

7 wire S; // Reported Input = Sum of (A + B)

8 wire C; // Reported Output = Carry of (A + B)

9
10 // Instantiate the Unit(Module) Under Test (UUT) //////////////////////////

11 Half_Adder uut (// This is in the form: ModuleToBeTested uut(

12 .A(A), // These lines are in the form: .X(Y),

13 .B(B), // where the first part [.X] is the input variable of

14 .S(S), // the uut, and the second part [(Y)] is the input

15 .C(C) // variable for the TestModule. (in this case the

16); // same variables were used in each.

17
18 // Initial Conditions ///

19 initial begin // Set initial conditions for input variables

20 A = 0; // Set input variable A to 0

21 B = 0; // Set input variable B to 0

22 end

23
24 // Generation of Truth-Table //

25 always

26 #1 A = ~A; // Toggle A - Every 1 Time-Unit (10nS * 1 = 10nS)

27
28 always

29 #2 B = ~B; // Toggle B - Every 2 Time-Units (10nS * 2 = 20nS)

30 endmodule

The code sets A and B to 0, waits 1 time-unit, sets A to 1, waits another 1 time-unit,
sets A to 0 and B to 1, then waits another 1 time-unit before setting A and B to 1.

5.3.7. Of additional note is a simple way to generate a clock signal. You can append the code
shown in Listing 12 to your “Test Fixture/file” to generate a clock with period of two
time-units.

Listing 12: Simple Clock Source in a Verilog Test Fixture

1 always

2 #1 clk = ~clk;

5.3.8. Save the test file and select “Simulation” → “Run Simulation” from the far left “Flow
Navigator”. Note: The Drop-Down menu is where you will select either “Behavioral”
or “Post-*”, specifying the type of simulation to be run.

5.3.9. Vivado will then display your simulation results. It is likely the simulation will need
to be zoomed in to fully analyze the results. To display the simulation results, click
the left-pointing arrow in order to see the beginning of your simulation, then click the
magnifying glass with the “−” sign, followed by your waveforms window to zoom out.

EE 231 - 10 - Fall 2018

5.4 Pin Assignment

You need to specify which inputs and outputs from your FPGA chip connect to the inputs
and outputs of the physical FPGA board. Some pins have already been internally wired to
the LEDs and push buttons on the board. A list of those pins is provided in Table 1 (at the
end of the document).

5.4.1. Select “RTL Analysis” from the far left “Flow Navigator”, then “Open Elaborated
Design”.

5.4.2. Select the “I/O ports ” tab at the bottom of the console, or if it is not there then from
“Window” → “I/O Ports”.

5.4.3. Expand the Ports Sections to view your inputs/outputs

5.4.4. Set desired pins according to Tables 1 and 2 in the “Package Pin” column, then set the
“I/O Std” to LVCMOS18 instead of default (LVCMOS18). Warning, if this step
is skipped your code will not compile later!

5.4.5. Repeat previous step until all input/output pins are assigned.

5.4.6. Save Constraints (CTRL + S)

5.5 Compiling

5.5.1. Select “Synthesis” from the “Flow Navigator”, then “Run Synthesis”. Once this is
done, the top right prompt will show what process is in progress.

5.5.2. After completion you will have the option to view reports or continue to Run Imple-
mentation.

5.5.3. If there are no errors, then your program’s syntax is correct. This does not mean
that your program will do what you want; you may have some logic errors.

5.5.4. Select “Implementation”, from the “Flow Navigator”, then “Run Implementation”.
Again, the top right prompt will show what is currently running.

5.5.5. Again, if there are no errors, then your program’s syntax is correct.

5.5.6. Later if you wish, you can skip to selecting “Run Implementation” and Vivado will
also run the Synthesis process beforehand.

EE 231 - 11 - Fall 2018

5.6 Programming the FPGA

The final step is to program the FPGA with your designed circuit. Be sure the correct device
is selected.

5.6.1. Select “Program and Debug” from the “Flow Navigator’, then “Generate Bitstream”.
This will create a file that is readable by the FPGA, and can be uploaded and run to
implement your design.

5.6.2. Connect your Spartan 7 FPGA board to the computer via USB.

5.6.3. Next, select “Open Hardware Manager”, then “Open Target”, then “auto-connect” to
have Vivado connect to your Spartan 7 FPGA board.

5.6.4. Lastly, select “Program Device”, then “xc7s25 0”, followed by “Next” to upload your
bitstream file to the FPGA.

5.6.5. After the bitstream file has been programmed to your board, the FPGA will imme-
diately begin running the implemented code. If successful, the half adder should be
running on the board and the buttons should react accordingly. Congratulations!

5.6.6. Note: The uploaded code is stored in volatile memory, and will be erased upon board
reset or power loss. Later, we will investigate programming the flash chip on-board
the Spartan 7 board, allowing programmed code to remain persistent after board re-
set/power loss.

EE 231 - 12 - Fall 2018

Table 1: CMOD Spartan 7 — Feature Assignments

Special Wire FPGA Pin

Button 0 BTN0 D2

Button 1 BTN1 D1

12 MHz Clock FPGA-CLK M9

RGB LED Red LED0 F2

RGB LED Green LED0 D3

RGB LED Blue LED0 F1

LED 1 LED1 E2

LED 2 LED2 K1

LED 3 LED3 J1

LED 4 LED4 E1

Table 2: CMOD Spartan 7 — DIP Pin Assignments

DIP Pin FPGA Pin Wire Wire FPGA Pin DIP Pin

1 L1 PIO01 PIO48 A4 48

2 M4 PIO02 PIO47 A3 47

3 M3 PIO03 PIO46 B4 46

4 N2 PIO04 PIO45 B3 45

5 M2 PIO05 PIO44 C1 44

6 P3 PIO06 PIO43 B1 43

7 N3 PIO07 PIO42 B2 42

8 P1 PIO08 PIO41 A2 41

9 N1 PIO09 PIO40 C5 40

- - - - - -

- - - - - -

- - - - - -

- - - - - -

- - - - - -

- - - - - -

16 P14 PIO16 AIN33P A11 33

AIN33N A12

17 P15 PIO17 AIN32P A13 32

AIN32N A14

18 N13 PIO18 PIO31 J11 31

19 N15 PIO19 PIO30 M13 30

20 N14 PIO20 PIO29 L13 29

21 M15 PIO21 PIO28 J15 28

22 M14 PIO22 PIO27 K14 27

23 L15 PIO23 PIO26 L14 26

24 VU VU GND GND 25

	Prelab
	Lab
	Supplement: Verilog
	Supplement: Writing Bad Code
	Supplement: Vivado
	Open Vivado and Start a new Project
	Writing the Code
	Simulating the Designed Circuit
	Pin Assignment
	Compiling
	Programming the FPGA

