
EE 231 - 1 - Fall 2018

Lab 2: Decoders and Multiplexers

Introduction

Decoders and multiplexers are important combinational circuits in many digital
logic designs. Decoders convert n inputs to a maximum of unique 2n outputs. A
special case is the binary coded decimal (BCD) to 7-segment decoder, where a four-bit
decimal digit (represented in BCD) is decoded into the corresponding seven-segment
code, which is then used as an input to the physical seven-segment display (Figure 1).
In this lab an understanding of both multiplexers and how to wire a DIP switch will
be fostered. These skills will be used in tandem to create a multiplexer circuit and
controlled by external input stimuli.

A simple computer has several main blocks, e.g.:

• Arithmetic Logic Unit (ALU): Performs arithmetic operations on numbers.

• Memory: Where the program is stored.

• Multiplexers: Select which piece of information to be passed on.

• Decoders: Determine, based on the input, whether to read from memory or input/out-
put lines.

• Computer Control Unit(CCU): Outputs the control signals that direct the operation
of the rest of the computer.

Even though we are not building a computer, this information give you some perspective
on the different components that you will be building and what they may be used for.

In this lab we will focus on the multiplexer that chooses either a reset address (Rst Addr),
program counter (PC), memory address register (MAR), or index register X (IRX). These signals
are used to determine the information required to enter the arithmetic logic unit (ALU)
component of the computer.

Figure 1: 7-Segment Display



EE 231 - 2 - Fall 2018

1 Prelab

1.1. Read the lab and the material provided in the supplement.

1.2. Place two of the 7-segment displays and the Spartan 7 FPGA on your breadboard.
How should the display be connected to the FPGA? What connections need to be
made? Are resistors needed for current management? (Note: Consult Spartan pinout
diagram in Figure 4) Make the necessary connections and wire up 2 seven segment
displays on your breadboard.

Figure 2: 7-Segment Display Diagram

1.3. Fill in the truth table for the BCD to 7-segment decoder shown in Table 1.
-Ex. If the input is 0011, LEDs A, B, C, D, and G should be on, while LEDs F and
E should be off (“1” is LED on, and “0” is LED off). See Figure 2 for reference.

For inputs 0xA through 0xF, naturally they don’t correspond to any number in the
decimal range, therefore output the corresponding hex value instead, i.e., for 0xA the
display should show the letter A. (all segments but D)

1.4. Design the multiplexer shown in Figure 5 with Addr Sel as the select signal, and
Rst Addr (we will use address 0xFF ), PC, MAR, and IRX as 8-bit input signals.

1.5. Design a Verilog program to implement the decoder from Table 1.



EE 231 - 3 - Fall 2018

2 Lab

2.1. Set the protoboard’s variable positive voltage (+) to 3.5V using a voltmeter. (Do
NOT use more than 4 V.) Verify that you are using the correct power source (row)
for the lab, as using 5V or more will damage the Spartan 7 input pins.

2.2. Connect the protoboard’s ground voltage to the Spartan 7 GND pin. Be sure to use
the Protoboard 3.5V as Vss, and Do NOT connect the Spartan 7 Vu pin to Vss. Why
do we keep Vu and Vss Separate?

2.3. Place a block of 8 DIP switches on your breadboard. Wire each pin according to the
circuit show in Figure 3a. Use the through-hole 1KΩ resistors, not the DIP package
220Ω resistors from your lab kit, shown in Figure 3b. These DIP Resistors can be
used to limit the current through LEDs (e.g. 7-segment displays). Note: adding these
resistors is not necessary using Spartan 7 board, due to the built-in pin resistors. Each
pin is already wired with a 240Ω resistor, limiting output current to around 20mA.

(a) DIP Switch Circuit (b) DIP 220Ω Resistor (4116R) Layout

Figure 3

2.4. Normally, connecting an LED to Vu and Gnd will result in the LED burning out. Why
does this happen?

2.5. In order to use the Spartan 7 I/O (In/Out) pins, you will need to assign the desired
pins to correspond to your code’s variables in Vivado. Familiarize yourself with the
orientation and numbering convention of the board, shown in Figure 4. Consult Tables
3 and 4 for S7 features as well as pin numbering and names.

Figure 4: CMOD-Spartan 7 Board Oreintation and Pin Numbering



EE 231 - 4 - Fall 2018

Table 1: Truth Table for Hexadecimal to 7-Segment Decoder

Digit Binary A B C D E F G
0 0000
1 0001
2 0010
3 0011 1 1 1 1 0 0 1
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

2.6. Now that the hardware is setup, design the binary coded decimal (BCD) to 7-segment
decoder and test it using different inputs from the dip switches.

2.7. Implement the multiplexer program that you made in the Prelab, as shown in Figure 5.
To test the multiplexer we need to hard code in Verilog Rst Addr to 0xFF, PC to 0x0A,
and MAR to 0x10. Connect IRX to the 8 DIP switches, and Mem Sel to the 2 push-button
switches on the board.

2.8. Connect the output address from the multiplexer to the two seven-segment LED
decoders, and display the selected output address.

Figure 5: Simple Multiplexer (Mux)



EE 231 - 5 - Fall 2018

3 Supplement: Verilog (2)

3.1 Verilog Logic Levels

Within Verilog there exist four logic levels, listed in Table 2.

Table 2: Verilog Logic Levels

Logic Description
0 Logic Zero; False Condition
1 Logic One; True Condition
X Unknown Logic Value
Z High Impedance

3.2 Verilog Always and Reg Keywords

3.2.1. Behavioral modeling uses the keywords always.

3.2.2. Target output is a type reg. Unlike a wire, reg is updated only when a new value is
assigned. In other words, it is not continuously updated as wire data types.

3.2.3. always may be followed by an event control expression.

3.2.4. always is followed by the symbol ‘@’ which is followed by a list of variables. Each time
there is a change in those variables, the always block is executed.

3.2.5. There is no semicolon at the end of the always block.

3.2.6. The list of variables are separated by the logical operator or, not the bitwise operator
OR.

3.2.7. Below in Listing 1 is an example of an always block:

Listing 1: Example of an Always Block

1 always @(A or B)

2 //Do Stuff

3.3 Verilog if-else Statements

In Verilog coding, if-else statements provide a means for conditional outputs based on the
arguments of the if statement. An example of this is shown in Listing 2.

Listing 2: Example of if-else Statement
1 output out;

2 input s,A,B;

3 reg out;

4 if(s)

5 out = A; // if s is 1, then out is A

6 else

7 out = B; // else (s =/= 1), then out is B



EE 231 - 6 - Fall 2018

3.4 Verilog case Statements

Case Statements provide an easy way to represent a multi-branch conditional statement.

3.4.1. The first statement that makes a match is executed.

3.4.2. Unspecified bit patterns should be treated using “default” as the keyword.

An example of a case statement is provided in Listing 3.

Listing 3: Four-to-one Line Multiplexer
1 module mux_4x1_example(

2 output reg out,

3 input [1:0] s, // Select, represented by 2 bit vector

4 input in_0, in_1, in_2, in_3);

5 always @(in_0,in_1,in_2,in_3,s)

6 case(s) // case s

7 2’b00: out <= in_0; // if s is 00 then output is in_0

8 2’b01: out <= in_1; // if s is 01 then output is in_1

9 2’b10: out <= in_2; // if s is 10 then output is in_2

10 2’b11: out <= in_3; // if s is 11 then output is in_3

11 endcase

12 endmodule



EE 231 - 7 - Fall 2018

Table 3: CMOD Spartan 7 — Feature Assignments

Special Wire FPGA Pin

Button 0 BTN0 D2

Button 1 BTN1 D1

12 MHz Clock FPGA-CLK M9

RGB LED Red LED0 F2

RGB LED Green LED0 D3

RGB LED Blue LED0 F1

LED 1 LED1 E2

LED 2 LED2 K1

LED 3 LED3 J1

LED 4 LED4 E1

Table 4: CMOD Spartan 7 — DIP Pin Assignments

DIP Pin FPGA Pin Wire Wire FPGA Pin DIP Pin

1 L1 PIO01 PIO48 A4 48

2 M4 PIO02 PIO47 A3 47

3 M3 PIO03 PIO46 B4 46

4 N2 PIO04 PIO45 B3 45

5 M2 PIO05 PIO44 C1 44

6 P3 PIO06 PIO43 B1 43

7 N3 PIO07 PIO42 B2 42

8 P1 PIO08 PIO41 A2 41

9 N1 PIO09 PIO40 C5 40

- - - - - -

- - - - - -

- - - - - -

- - - - - -

- - - - - -

- - - - - -

16 P14 PIO16 AIN33P A11 33

AIN33N A12

17 P15 PIO17 AIN32P A13 32

AIN32N A14

18 N13 PIO18 PIO31 J11 31

19 N15 PIO19 PIO30 M13 30

20 N14 PIO20 PIO29 L13 29

21 M15 PIO21 PIO28 J15 28

22 M14 PIO22 PIO27 K14 27

23 L15 PIO23 PIO26 L14 26

24 VU VU GND GND 25


	Prelab
	Lab
	Supplement: Verilog (2)
	Verilog Logic Levels
	Verilog Always and Reg Keywords
	Verilog if-else Statements
	Verilog case Statements


