EE 231 -1- Fall 2018

Lab 5: Registers

Introduction

In this lab, students will investigate and build several sequential circuits. The
behavior of sequential systems depends not only on the current values of the input
variables, but also on the sequence of input values that occurred in the past. Such
systems contain some type of storage systems, created by individual memory elements.
Several types of registers will be designed accordingly in this lab.

1 Prelab

1.1.

1.2.

1.3.

1.4.

Read the Lab and Supplement. If there is anything that is unclear, refer to the book for
explanation or examples, or attend the Digital Lab help hours (5:00-8:00 Mon.-Thurs.)
or other EE 231 Lab sections to ask questions.

Design an eight-bit synchronous latch in Verilog.
Design an eight-bit PC register in Verilog.

Write a program main that calls the above two designs to test that they function
properly.

2 Lab

You will implement five different 8-bit registers: PC (Program Counter), MAR (Memory Ad-
dressing Register), OUT (Output), ACCA (Accumulator A), and IRX (Instruction Register X).
In addition, you will design two single one-bit registers. What simple circuit elements
are C and Z?

2.1.

2.2.

2.3.

MAR, OUT, ACCA, and IRX are all 8-bit registers with synchronous parallel load. These
registers all have a clock input, an 8-bit data input, and an active low load/enable
input, as well as an 8-bit output.

The PC (Figure 2) is an 8-bit register with synchronous parallel load capability, syn-
chronous count, and synchronous reset. The PC has a clock input, an 8-bit data input,
and 3 additional (active low) inputs:

e PC_Load loads the program counter.

e PC_Increment increments the program counter by 1.

e Reset resets the program counter to 0.
Implement these registers (synchronous load and synchronous load/count) in Verilog.
Include each one in a higher-level design file. Use a DIP switch for the input data, and

switches on the evaluation board for PC_Load, PC_Increment, and PC_Clock. Examine
the Vivado RTL Schematic to verify proper implementation.



EE 231 -2- Fall 2018

2.4. Verify that the load function works correctly for the parallel load register and that
both the load and increment functions work correctly for the load/increment register.

3 Supplement: Registers

A flip-flop is a storage element that can store one bit of information. A register is a collection
of flip-flops which are operated as a set, rather than as individuals, with n flip-flops in a
set a register can store n bits of information. (Fundamentals of Digital Logic w/ Verilog
design, Brown, Vranesic. (ch. 5.8)). Two specific examples of registers are discussed in the
following subsections.

3.1 Simple Latch

Shown in Figure 1, the device takes D_In, Clock, and Load as inputs, and it returns D_Out
as an output. On the positive edge of the clock, values in D_In will be read. If load is active,
D_In will be used to set the new value of D_Out, otherwise the value of D_Out will remain
unchanged, until the system is re-evaluated at the next clock edge.

e The input Load is active-low. Only when Load is low, can a new value be read into
the register, otherwise the previous value is held (stored as output).

PYAN1Y

e The commands “posedge,” “negedge” determine the execution on clock signal edges
(rising or falling). They are included inside of an “always@()” block.

e As seen in the diagram below, the register has a Clock input. The register changes its
state on the rising edge of the clock signal.

Listing 1: Using the edge Command in Verilog
module ClockExample(input Clock, ..., ...);
always@(posedge Clock) begin
if (...
//Do something. ..

//Do something else...
end
endmodule

1
2
3
4
5 else
6
7
8

D_In —» — D_Out

Register

Clock
L

Load J

Figure 1: Simple Register/Latch




EE 231 -3- Fall 2018

3.2 Program Counter

Another type of register is called a program counter (PC). It tracks which instruction in
memory to execute, and must provide the functionality discussed below. (Note: notice the
bubble inputs to Load, Increment, and Reset, indicating that they are active-low)

e The program counter needs to know where to start from. It must initialize itself to
a specific value when it gets reset. In this case, the program counter should be reset
to zero to start execution at the first instruction of the program. This behavior is
controlled by the Reset line.

e Programs are, usually, executed sequentially. For example, after executing the instruc-
tion at address 0x0123, the program will execute the instruction at address 0x0124.
As such, the PC needs to support incrementation. This behavior is controlled by the
Increment line.

e Sometimes, the program needs to execute code in a different area of memory (jump
around). Flow control statements such as for and while do this. In these cases, the
PC needs to support being loaded with a new (specified) address. This behavior is
controlled by the Load line.

D_In —» — D_Out

PC

Clock

LI R

Load J
Increment
Reset

Figure 2: Program Counter (PC) Register

Specifically, the Program Counter used in this lab (Figure 2) should behave as follows:
3.2.1. The PC should increment D_Out to D_Out + 1 on the rising edge of Clock.
3.2.2. When Load is low, the input data D_In should be latched into the register on the rising

edge of Clock.

The system, that controls the PC, the Computer Control unit CCU will ensure that Load
and Increment are never low at the same time. In your program, you should have PC
do something sensible, such as latch D_In, if both happen to be low simultaneously.

3.2.3. When Reset is low, PC should reset to 0x00 on the next clock edge.

This is normally called a synchronous counter with synchronous load and synchronous
reset. Note: Again, from the bubbles we know that all of the control lines are active low,
they should be held high until needed.



	Prelab
	Lab
	Supplement: Registers
	Simple Latch
	Program Counter


