## EE 341 - Homework 9

## Nov. 5, 2018

1. A system is characterized by the differential equation

$$
c_{1} \frac{d^{2}}{d t^{2}} y+c_{2} \frac{d y}{d t}+c_{3} y=A \cos (\omega t+\phi)
$$

determine $y(t)$ for the following: $c_{1}=5 \times 10^{-6}, c_{2}=1, c_{3}=10^{6}, A=4, \omega=10^{6} \mathrm{rad} / \mathrm{s}$, and $\phi=-60$ degrees.
2. Find the Fourier Series coefficients for the periodic signal shown in the figure below

3. Consider the continuous-time LTI system with the frequency response

$$
H(w)=\frac{a-j w}{a+j w}
$$

where $a>0$.
(a) What is the magnitude of $H(w)$ ?
(b) What is the angle $\angle(H(w)$ ?
4. Determine the Fourier Transform of the waveform in the figure below

5. Determine the resonant frequency of the circuit shown in the figure below, given that $\mathrm{R}=$ $100 \Omega, \mathrm{~L}=5 \mathrm{mH}$, and $\mathrm{C}=1 \mu \mathrm{~F}$.

6. For the op-amp circuit of the figure below provide the following:
(a) $H(\omega)=\frac{V_{o}}{V_{s}}$
(b) What type of filter is it? What is its maximum gain?


