1. P_7_7

Data analysis of the breaking strength of a certain fabric shows that it is normally distributed with a mean of 300 lb and a variance of 9 .
(a) Estimate the percentage of fabric samples that will have a breaking strength no less than 294 lb .
(b) Estimate the percentage of fabric samples that will have a breaking strength no less than 297 lb and no greater than 303 lb .
2. P_7_13

Use a random number generator to produce 1000 uniformly distributed numbers with mean 10 , a minimum of 2 , and a maximum of 18.0 btain the mean and the histogram of these numbers, and discuss whether they appear uniformly distributed with the desired mean and variance.
3. P_7_27

The following data are the measured temperature T of water flowing from a hot water faucet after it is turned on at time $t=0$.

$\boldsymbol{t}(\mathrm{sec})$	$\boldsymbol{T}\left({ }^{\circ} \boldsymbol{F}\right)$	$\boldsymbol{t}(\mathrm{sec})$	$\boldsymbol{T}\left({ }^{\circ} \boldsymbol{F}\right)$
0	72.5	6	109.3
1	78.1	7	110.2
2	86.4	8	110.5
3	92.3	9	109.9
4	110.6	10	110.2
5	111.5		

(a) Plot the data, connecting them first with straight lines and then with a cubic spline.
(b) estimate the temperature values at the following times, using linear interpolation and then cubic spline interpolation: $t=0.6,2.5,4.7,8.9$
(c) Use both the linear and cubic spline interpolations to estimate the time it will take for the temperature to equal the following values: $T=75,85,90,105$

