EE 271 - ABET_Quiz

Oct. 30, 2019

Name

The Volume V and the area A of a conical paper cup are given by

$$
V=\frac{1}{3} \pi r^{2} h \quad A=\pi r \sqrt{r^{2}+h^{2}}
$$

where r is the radius of the base of the cone and h is the height of the cone.

1. Create a user-defined function that accepts r as the only argument and computes A for a given value of V. Declare V to be global within the function.
2. For $V=10 \mathrm{in}^{3}$, use the user-defined function and a minimizaton function from MATLAB to compute the value of r that minimizes the area A.
3. What is the corresponding value of the height h ?
4. Investigate the sensitivity of the solution by plotting V versus r. How much can r vary about its optimal value before the area increases 10 percent above the minimum value?
