ES 332 Hwk 9

1.- Drill Exercise 8.8

For the (series RLC) circuit given in Fig. 8.12 (p. 369), determine V_{R} and V_{L} by using voltage division.
$V_{s}=17 \angle\left(0^{\circ}\right), \quad R=\frac{5}{3} \Omega, \quad \omega=3 \mathrm{rad} / \mathrm{s}, \quad j \omega L=j 15 \Omega$, and
$\frac{1}{j \omega C}=-j \frac{25}{3} \Omega$

2.- (P 8.24 of text) For the (series RLC) circuit given in Fig. 8.5 below (p. 352), suppose that:

$$
R=\frac{5}{4} \Omega, L=\frac{1}{4} \mathbf{H}, C=1 \mathbf{F}, \text { and } v_{s}=4 \cos (2 t) \mathrm{V} .
$$

Find $v_{c}(t)$ using frequency domain analysis. Draw the corresponding phasor diagram.

$$
v_{s}=17 \cos 3 t \mathrm{~V}\left(\begin{array}{c}
+ \\
\sim
\end{array}\right.
$$

