ES 332 Hwk 9

1.- Drill Exercise 8.8

For the (series RLC) circuit given in Fig. 8.12 (p. 369), determine V_R and V_L by using voltage division.

$$V_{s}=17\angle(0^{o})\,,\ R=\frac{5}{3}\Omega,\quad \omega=3\ \mathrm{rad/s},\ j\omega L=j15\Omega,\ \mathrm{and}$$

$$\frac{1}{j\omega C} = -j\frac{25}{3}\Omega$$

2.- (P 8.24 of text) For the (series RLC) circuit given in Fig. 8.5 below (p. 352), suppose that:

$$R=rac{5}{4}\Omega$$
, $L=rac{1}{4}$ H, $C=1$ F, and $v_s=4\cos(2t)$ V.

Find $v_c(t)$ using frequency domain analysis. Draw the corresponding phasor diagram.

