Analog Electronics

Hwk 4a

*2.44 Figure P2.44 shows a circuit for a digital-to-analog converter (DAC). The circuit accepts a 4 -bit input binary word $a_{3} a_{2} a_{1} a_{0}$, where a_{0}, a_{1}, a_{2}, and a_{3} take the values of 0 or 1 , and it provides an analog output voltage v_{0} proportional to the value of the digital input. Each of the bits of the input word controls the correspondingly numbered switch. For instance, if a_{2} is 0 then switch S_{2} connects the $20-\mathrm{k} \Omega$ resistor to ground, while if a_{2} is 1 then S_{2} connects the $20-\mathrm{k} \Omega$ resistor to the $+5-\mathrm{V}$ power supply. Show that v_{0} is given by
$v_{0}=-\frac{R_{f}}{16}\left[2^{0} a_{0}+2^{1} a_{1}+2^{2} a_{2}+2^{3} a_{3}\right]$
ed where R_{f} is in kilohms. Find the value of R_{f} so that v_{O} ranges from 0 to -5 volts.

Figure P 2.44

P 2.50. Derive an expression for the voltage gain v_{0} / v_{I} for the circuit below.

P 2.51. For the circuit below, use superposition to find v_{0} in terms of the input voltages v_{1} and v_{2}
$v_{1}=10 \sin (2 \pi \times 60 t)-0.1 \sin (2 \pi \times 5000 t), \quad$ volts
$v_{2}=10 \sin (2 \pi \times 60 t)+0.1 \sin (2 \pi \times 5000 t), \quad$ volts

