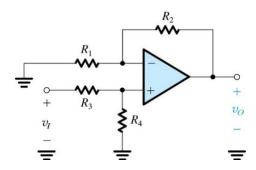
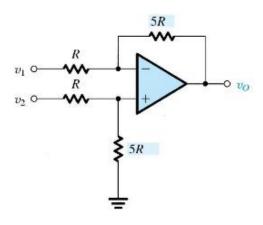

## **Analog Electronics**

Hwk 4a


\*2.44 Figure P2.44 shows a circuit for a digital-to-analog converter (DAC). The circuit accepts a 4-bit input binary word  $a_3a_2a_1a_0$ , where  $a_0$ ,  $a_1$ ,  $a_2$ , and  $a_3$  take the values of 0 or 1, and it provides an analog output voltage  $v_0$  proportional to the value of the digital input. Each of the bits of the input word controls the correspondingly numbered switch. For instance, if  $a_2$  is 0 then switch  $S_2$  connects the  $20-k\Omega$  resistor to ground, while if  $a_2$  is 1 then  $S_2$  connects the  $20-k\Omega$  resistor to the +5-V power supply. Show that  $v_0$  is given by

$$v_o = -\frac{R_f}{16} [2^0 a_0 + 2^1 a_1 + 2^2 a_2 + 2^3 a_3]$$

where  $R_f$  is in kilohms. Find the value of  $R_f$  so that  $v_O$  ranges from 0 to -5 volts.




P 2.50. Derive an expression for the voltage gain  $v_0/v_I$  for the circuit below.



P 2.51. For the circuit below, use superposition to find  $\ v_0$  in terms of the input voltages  $\ v_1$  and  $\ v_2$ 

$$v_1 = 10 \sin(2\pi \times 60t) - 0.1 \sin(2\pi \times 5000t), \quad volts$$
  
 $v_2 = 10 \sin(2\pi \times 60t) + 0.1 \sin(2\pi \times 5000t), \quad volts$ 

