Lecture 12 EE 308 Spring 2016

 Setting and clearing bits in C
« Using pointers in C
o Program to count the number of negative numbers in an
area of memory

« Introduction to the MC9S12 Hardware Subsystems
o The MCSS12 timer subsystem

Lecture 12

Operators in C

EE 308 Spring 2016

Operator Action example
| Bitwise OR %00001010 | %01011111 =% 01011111
& Bitwise AND |2%00001010 & %01011111 = % 00001010
A Bitwise XOR |%00001010 A %01011111 =% 01010101
~ Bitwise COMP| ~%00000101 = %11111010
% Modulo 10%8=2
I Logical OR | %00000000 || %00100000 = 1
&& Logical AND |%11000001 && %00000011 = 1
%11000000 && 2%00000000=0
Setting and Clearing Bits in C

Assembly C action

bset DDRB,#$0F DDRB = DDRB | 0x0f; Set 4 .SB of DDRB

bclr DDRB,#$F0 DDRB = DDRB & ~0xf0; Clear 4 MSB of DDRB

11: brset PTB,#$01,11

12: brelr PTB,#$02,12

while (PTB & 0x01) == 0x01)

while ((PTB & 0x02) == 0x00)

Wait until bit clear

Wait until bit set

Lecture 12 EE 308 Spring 2016

Pointers in C
To read a byte from memory location 0xE000:
var = *(char *) OxE000;
To write a 16-bit word to memory location OxE002:

*(int *) 0xE002 = var;

Lecture 12 EE 308 Spring 2016

Program to count the number of negative numbers in an array
in memory

/* Program to count the number of negative numbers in memory *
Start at 0xE000, go through OXEFFF
Treat the numbers as 8-bit

*/
#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */

unsigned short num_neg; /* Make num_neg global so we can */
/* find it in memory use type int so */
/* can hold value larger than 256 */
/* Unsigned because number cannot */
/* be negative */

main()

{

char *ptr,*start,*end;

start = (char *) 0xE000; /* Address of first element */
end = (char *) OxEFFF; /* Address of last element */

num_neg = 0;

for (ptr = start; ptr <= end; ptr = ptr+1)
{
if (*ptr < 0) num_neg = num_neg + 1;
}
_ _asm(swi); /* Exit to DBug-12 */

Lecture 12 EE 308 Spring 2016

Hello, World!
* Here is the standard “hello, world” program:
#include <stdio.h>
main()

{
}

printf(""hello, world!\r\n");

* To write the ”hello, world” program, you need to use the printf()
function.

* The printf() function is normally a library function
* In CodeWarrior, you can access printf() by doing the following:
1. In your C program, add the following lines:

#include <stdio.h>

#include <termio.h>

2. In CodeWarrior, select Project, Add Files, and select the file
termio.c. This is in the CodeWarrior library, which is in the fol-
lowing location on my computer:

c:\Program Files\Freescale\CWS12v5.1\lib\hc12c\src

Lecture 12 EE 308 Spring 2016

Your C program will look like this:

#include <stdio.h>

#include <termio.h>

main()

{
printf("hello, world!\r\n");
_ _asm(swi);

}

 The above program is about 1,500 bytes long.

* To load the program into your Dragon12 board, you will have to
edit the .s19 file and remove the first line which starts with a SO.
The last line of the .s19 file looks this:

S105FFFE2029B4

This tells the loader to put the 16-bit number 2029 into address
FFFE. The address FFFE is in flash EEPROM, and the loader will
not be able to write there. You can leave the line in, in which case
DBug12 will give you the warning "Can’t Write Target Memory",
or you can remove this line from the .s19 file to avoid getting the
warning. (If you could put 2029 into address FFFE, your MC9S12
would start executing the code at address 0x2029 when you reset
the board.)

Lecture 12 EE 308 Spring 2016

* You can print out variables as well. Here is an example:

#include <stdio.h>
#include <termio.h>

main()

{
int i;
for (i=0;i<100;i++) printf("i = %d\r\n",i);
_ _asm(swi);

Lecture 12 EE 308 Spring 2016

MC9S12 Built-In Hardware

» The MC9S12 has a number of useful pieces of hardware built
into the chip.

» Different versions of the 9S12 have slightly different pieces of
hardware. Information about the hardware modules is found in
data sheet for the modules.

* We are using the MC9S12DP256 chip.
* Here is some of the hardware available on the MC9S12DP256:

— General Purpose Input/Output (GPIO) Pins: These pins can
be used to read the logic level on a MC9S12 pin (input) or write a
logic level to an MC9S12 pin (output). We have already seen
examples of this — PORTA and PORTB. Each GPIO pin has an
associated bit in a data direction register which you use to tell the
MC9S12 if you want to use the GPIO pin as input or output. (For
example, DDRA is the data direction register for PORTA..)

- Timer-Counter Pins: The MC9S12 is often used to time or count
events. For example, to use the MC9S12 in a speedometer circuit
you need to determine the time it takes for a wheel to make one
revolution.

- To keep track of the number of people passing through a
turnstile you need to count the number of times the turnstile
is used.

Lecture 12 EE 308 Spring 2016

- To control the ignition system of an automobile you need to
make a particular spark plug fire at a particular time. The
MC9S12 has hardware built in to do these tasks.

* For information, see the ECT_16B8C Block User Guide.

— Pulse Width Modulation (PWM) Pins: To make a motor turn at
a particular speed you need to send it a pulse width modulated
signal. This is a signal at a particular frequency (which differs for
different motors), which is high for part of the period and low for
the rest of the period. To have the motor turn slowly, the signal
might be high for 10% of the time and low for 90% of the time. To
have the motor turn fast, the signal might be high for 90% of the
time and low for 10% of the time.

* For information, see the PWM_8B8C Block User Guide.

— Serial Interfaces: It is often convenient to talk to other digital
devices (such as another computer) over a serial interface. When
you connect your MC9S12 to the PC in the lab, the MC9S12 talks
to the PC over a serial interface. The MC9S12 has two serial
interfaces: an asynchronous serial interface (called the Serial
Communications Interface, or SCI) and a synchronous serial
interface (called the Serial Peripheral Interface, or SPI).

* For information on the SCI, see the 9S12 Serial
Communications Interface (SCI) Block User Guide.

* For information on the SPI, see the SPI Block User Guide.
— Analog-to-Digital Converter (ADC): Sometimes it is useful to

convert a voltage to a digital number for use by the MC9S12. For
example, a temperature sensor may put out a voltage proportional

Lecture 12 EE 308 Spring 2016

to the temperature. By converting the voltage to a digital number,
you can use the MC9S12 to determine the temperature.

* For information, see the ATD_10B8C Block User Guide.

* Most of the MC9S12 pins serve dual purposes. For example,
PORTT is used for the timer/counter functions. If you do not need
to use PORTT for timer/counter functions, you can use the pins of
PORTT for GPIO. There are registers which allow you to set up
the PORTT pins to use as GPIO, or to use as timer/counter
functions. (These are called the Timer Control Registers).

Lecture 12 EE 308 Spring 2016

Introduction to the MC9S12 Timer Subsystem

* The MC9S12 has a 16-bit counter that normally runs with a 24
MHz clock.

» Complete information on the MC9S12 timer subsystem can be
found in the ECT_16B8C Block User Guide. ECT stands for
Enhanced Capture Timer.

* When you reset the MC9S12, the clock to the timer subsystem is
initially turned off to save power.

— To turn on the clock you need to write a 1 to Bit 7 of
register TSCR1 (Timer System Control Register 1) at
address 0x0046.

* The clock starts at 0x0000, counts up (0x0001, 0x0002, etc.) until
it gets to OXFFFF. It rolls over from OXFFFF to 0x0000, and
continues counting forever (until you turn the counter off or reset

the MC9S12).

« It takes 2.7307 ms (65,536 counts/24,000,000 counts/sec) for the
counter to count from 0x0000 to OxFFFF and roll over to 0x0000.

* To determine the time an event happens, you can read the value
of the clock (by reading the 16-bit TCNT (Timer Count Register)
at address 0x0044 (page 28 of MC9S12DP256B).

Lecture 12 EE 308 Spring 2016
Bus clock ———- = Prescaler Channe! 0
Input capture --|_
- | D0
16-bit Counter U EOTRSEN >
Channel 1
Input capture -¢-|_ 10C1
l’“r:?;ﬂﬂh'f_ counter o | |16-hit Modulus Counter Output compare =
Channel 2
. Input capture
Timer overflow "|_..._..,
interrupt - Output compare 1oz
Titr11er c?annel 0 Channel 3
Interrup Input capture N
- Cufput compare —=10C3
- Reqisters Channel 4
- Input capture
Oufpuf compare . el |+ =10C4
R a—
Channel &
Input capture «l-|
- Cutput compare = 10C5
Timer channgl 7
interrupt Channel &
PA overflow - 16-hit Input capturs q.l
interrupt Pulse accumulator A Output compare = 1oc8
E'E‘ input - Channel 7
IStBEgEgEﬂow 16-hit Input capture -'f-l_ Tolord
interrupt - Pulse accumulator B Oufput compare (=

Figure 1-1 Timer Block Diagram

Lecture 12 EE 308 Spring 2016

Timer inside the MC9S12:

When you enable the timer (by writing a 1 to bit 7 of TSCR1), you
connect a 24—MHz oscillator to a 16—bit counter.

You can read the counter at address TCNT.

The counter will start at 0, will count to OXFFFF, then will roll over
to 0x0000. It will take 2.7307 ms for this to happen.

16-Bit Counter
TCNT {addr (xd4)

24 MHz

TEN
(Bit 7 of TSCR1, addr OxdE&)

To enable timer on MC9S12, set Bit 7 of register TCSR1:

bset TSCR1,#$80 TSCR1 =TSCR1 | 0x80;

/

Why using the OR operator and not
TSCR1=0x80?

Lecture 12 EE 308 Spring 2016

3.3.6 TSCR1 — Timer System Control Register 1
Register offset: §_06

BITT & 3 4 & 2 1 SITD
R H a O H
w TEN TEWAL TSFRZ TFFCGA
RESET: O o a O o a O o

= Unimplemenied or Resened

Figure 3-6 Timer System Control Register 1 (TSCR1)

Eead or write anytime.

TEN — Timeer Enable
0 = Diizables the main timer, including the counter. Can be used for reducing power consumption.
1 = Allows the timer to function normalby.

If for any reason the timer is not active, there is no <64 clock for the pulse accumulator since the <64
is generated by the timer prescaler.

TSWAI — Timer Module Stops While in Wait
0 = Allows the timer module to continue running during wait
1 = Disables the tmer module when the MOCL is in the wait mode. Timer interrupts canmot be osed
to get the MCU out of wait

TEWAL also affects pulse accumulators and modulus down counters.

TSFRZ. — Timer and Modulus Counter Stop While in Freeze Mode
0 = Allows the timer and modulus counter to continue running while in freeze mode.
1 = [hsables the tmer and modulus counter whenever the MOCU is in freeze mode. This is wseful
for emulation.

TSFEE doss not stop the pulse sccumulator,

TFFCA — Timer Fast Flag Clear All

0 = Allows the timer flag clearing to function normally.

1 = For TFLG130E), a read from an input capture or a write to the output compare channe|
{510-51F) causes the comesponding channel flag. CnF, to be cleared. For TFLG2 (S0F), any
access to the TCNT register (304, 305) clears the TOF flag. Any access to the PACN3 and
PACN2 mgisters (522, $23) clears the PAOVF and PAIF flags in the PAFLG register ($21).
Any access to the PACNT and PACNO registers (524, §25) clears the PRBOVF flag in the
PBFLG register ($31). This has the advantage of eliminating software overhead in a separate
chear sequence. Extra came is required to avoid accidental flag clearing due to unintended
ACCeSSes.

Lecture 12 EE 308 Spring 2016

* To put in a delay of 2.7307 ms, you could wait from one reading
of 0x0000 to the next reading of 0x0000.

* Problem: You cannot read the TCNT register quickly enough to
make sure you will see the 0x0000.

To put in a delay for 2.7307 ms, could watch timer until
TCNT == 0x0000:

bset TSCR1,#$80 TSCR1 = TSCR1 | 0x80;
11: 1dd TCNT [3] while (TCNT != 0x0000) ;
bne 11 [3/1]

Problem: You might see OxFFFF and 0x0001, and miss
0x0000

16-Bit Counter
TCNT {addr Ox44)

24 MHz
TEN

(Bit 7 of TSCR1, addr Ox46)

* Solution: The MC9S12 has built-in hardware which will set a
flip-flop every time the counter rolls over from OxFFFF to 0x0000.

* To wait for 2.7307 ms, just wait until the flip-flop is set, then
clear the flip-flop, and wait until the next time the flip-flop is set.

* You can find the state of the flip-flop by looking at bit 7 (the
Timer Overflow Flag (TOF) bit) of the Timer Flag Register 2
(TFLG2) register at address 0x004F.

Lecture 12 EE 308 Spring 2016

* You can clear the flip-flop by writing a 1 to the TOF bit of
TFLG2.

Solution: When timer overflows, it latches a 1 into a flip—flop.
Now when timer overflows (goes from OxFFFF to 0x0000), Bit 7
of TFLG?2 register is set to one. Can clear register by writing a 1 to

Bit 7 of TFLG2 register.
TIMER OVERFLOW INTERRUPT
L=
| ro
1] g bm——— Fead
(BT of TFLGZ, adidr [wdF)
— o~ 16-8it Countar Cragariiow }
TEN TCHT {mddr Gadd) B
(BT of TSCR1. oddr xds)
TOF
Wi
(BR T of TALGE2. addr (n&F)
bset TSCR1,#$80 ; Enable timer
11: brclr TFLG2,#$80,11 ; Wait for Bit 7 of TFLG2 is set TSCR1 =TSCR1 | 0x80; //Enable timer
ldaa #$80 while ((TFLG2 & 0x80) == 0) ; // Wait for TOF

program ... program ...

staa TFGL2 ; Clear TOF flag TFLG2 = 0x80; // Clear TOF

Lecture 12 EE 308 Spring 2016

3.3.13 TFLGZ — Main Timer Interrupt Flag 2

Register offset: §_OF
BITT

BITO
R o] o H a o a
TOF
W
RESET: a o o o 0 a o a

- |JI'||IT'FI|E'11EI'I1E¢1 or Resenved
Figure 3-13 Main Timer Interrupt Flag 2 (TFLG2)

TFLG2 indicates when interrupt conditions have occurred. To clear a bit in the flag register, write the bit
o one.

Read any time. Write used in clearing mechanism (set bits cause cormesponding bits to be cleared).

Any access to TCNT will clear TFLG2 register if the TFFCA bit in TSCR register is set.

TOF — Timer Orverflow Flag

Set when 16-bit free-running timer overflows from SFFFF to S0000. This bit is cleared automatically
by a write to the TFLG2 register with bit 7 set. (See also TCRE control bit explanation.)

Lecture 12 EE 308 Spring 2016

» Another problem: Sometimes you may want to delay longer
than 2.7307 ms, or time an event which takes longer than 2.7307
ms. This is hard to do if the counter rolls over every 2.7307 ms.

* Solution: The MC9S12 allows you to slow down the clock which
drives the counter.

* You can slow down the clock by dividing the 24 MHz clock by
2,4, 8,16, 32, 64 or 128.

* You do this by writing to the prescaler bits (PR2:0) of the Timer
System Control Register 2 (TSCR2) Register at address 0x004D.

2.7307 ms will be too short if you want to see lights flash. You can
slow down clock by dividing it before you send it to the 16—bit
counter. By setting prescaler bits PR2,PR1,PR0 of TSCR2 you
can slow down the clock:

PR Divide Freq Overflow Rate
000 1 24 MHz 2.7307 ms

001 2 12 MHz 5.4613 ms

010 4 6 MHz 10.9227 ms
011 8 3 MHz 21.8453 ms
100 16 1.5 MHz 43.6907 ms
101 32 0.75 MHz 87.3813 ms
110 64 0.375 MHz 174.7627 ms
111 128 0.1875 MHz 349.5253 ms

Lecture 12 EE 308 Spring 2016

To set up timer so it will overflow every 87.3813 ms:

bset TSCR1,#$80 TSCR1 =TSCR1 | 0x80;
ldaa #$05 TSCR2 = 0x05;
staa TSCR2

TIMER OVERFLOW INTERRUPT

LleH

| 1 0w

Raad
{Bit 7 of TFLGZ. addr tudF)
st [IO o,
TEN E
{BItT of TECR, addr x5
PREZO]
{ESts 2-0 of TSCAZ addr T4l TOF

Wit
(Bl T of TFLGL addr tdF)

Lecture 12 EE 308 Spring 2016

3.3.10 TIE — Timer Interrupt Enable Register

Register offset: §_0C

BIm7 & 5 4 3 2 1 BITO
R
- CTl CEl CH C4l C3al ca Cil o
RESET: o 0 0 1] o 0 o} 1]

Figure 3-10 Timer Interrupt Enable Register (TIE)

Read or write anytime.

The bits in TIE comespond bit-for-bit with the bits in the TFLG status register. If cleard, the
corrzsponding flag is disabled from causing a hardware interrupt. If set. the comesponding flag is enabled

to cause a inferrupt.

CTHCO — Inpat Capture/Cutput Compare “x” Interrupt Enable

3.3.11 TSCR2 — Timer System Control Register 2

Register offset: $_0D

BITT & =3 4] 2 1 EITD
R 1]] 1]
w TOH TCRE PR2 PR1 PRO
RESET: a 0 0 o] a o]

= Unimplemenied or Resened

Figure 3-11 Timer System Control Register 2 (TSCR2)

Read or write anytime.

T — Timer Overflow Interrupt Enable
0 = Intermapt inhibited
1 = Hardware: interrupt requested when TOF flag set

TCRE — Timer Counter Reset Enable
This bit allews the timer counter to be reset by a successful output compare 7 event. This mode of
operation is similar to an up-counting modulus counter.
() = Counter reset inhibited and counter free runs
1 = Counter reset by a successful output compare 7
If TCT = 0000 and TCRE = 1, TCNT will stay at S0000 continuously. 1f TCT7 = 3FFFF and TCRE =
1, TOF will never be set when TCNT is reset from $FFFF 1o S0000,

PRZ, PE1. PRO— Timer Prescaler Select

Lecture 12 EE 308 Spring 2016

ECT_1688C Block User Guide W01.03

These three bits specify the number of +2 stages that are to be inseried between the bus clock and the
main Hmer counier.

Table 3-4 Prescaler Selection

PR2 PR1 PFRO Prescale Factor
o a o 1
o a 1 2
o 1 o 4
o 1 1 g8
1 a o 16
1 a 1 32
1 1 §] bed
1 1 1 128

The newly selected prescale factor will not take effect until the next synchronized edge when: all
prescak counter stages equal zero.

3.3.12 TFLG1 — Main Timer Interrupt Flag 1

Register offset- $_0E

By [} 3 4 3 2 1 BITa
R
w C7F CEF C5F C4F C3F C2F C1F COF
RESET:] 0] o] o 0 0

Figure 3-12 Main Timer Interrupt Flag 1 (TFLG1)

TFLG1 indicates when interrupt conditions have ocourred. To clear a bit in the flag register, write a one
to the bit.

TFLG1 indicates when interrupt conditions have occurred. To clear a bit in the flag register. wrile a one
to the bit.

Use of the TFMOD bit in the ICS5Y S register (32B) in conjunction with the use of the ICOVW regiser
(32A) allows a timer imzrrupt 1o be generated after capturing two values in the capture and holding
registers instead of penerating an interrupt for every capture.

Read anytime. Write used in the clearing mechanizsm (set bits cause cormesponding bits 1o be cleaned).
Writing a zero will not affect current status of the bit

When TFFCA bit in TSCR megister is set, a read from an inpot capture or a write into an ouiput comparn:
channel ($10-%1F) will cause the comesponding channel flag CoF to be cleared.
CTE-C0F — Input Capturs/Cutput Compare Channel “n” Flag.

C0F can also be set by 16- bit Pulse Accumulator B (PACB). C3F - COF can also be set by 8 - bit pulse
accumulators PACS - PACO.

Lecture 12 EE 308 Spring 2016

Setting and Clearing Bits in C

* To put a specific number into a memory location or register (e.g.,
to put 0x55 into PORTA):

movb #$55,PORTA PORTA = 0x55;

» To set a particular bit of a register (e.g., set Bit 4 of PORTA)
while leaving the other bits unchanged do a bitwise OR of the
register and a mask which has a 1 in the bit(s) you want to set, and
a 0 in the other bits:

bset PORTA,#$10 PORTA = PORTA | 0x10;

* To clear a particular bit of a register (e.g., clear Bit 5 of PORTA)
while leaving the other bits unchanged do a bitwise AND of the
register and a mask which has a 0 in the bit(s) you want to clear,
and a 1 in the other bits. You can construct this mask by
complementing a mask which has a 1 in the bit(s) you want to set,
and a 0 in the other bits:

bclr PORTA,#$20 PORTA = PORTA & 0xDF;
PORTA = PORTA & ~0x20;
Using ~0x20 is better than using OxDF because it is less

likely that you will make a mistake when complementing 0x20 in
your head.

» To change several bits of a register, AND the register with 1’s in
the bits you want to leave unchanged, then OR the result with 1’s

Lecture 12 EE 308 Spring 2016

in the bits you want to set, and 0’s in the bits you want to clear. For
example, to set bits 2 and 0, and clear bit 1 (write 101 to bits 2-0)
of TSCRZ2, do the following:

bclr TSCR2,#$02 TSCR2 = TSCR2 & ~0x02;
bset TSCR2,#05 TSCR2 = TSCR2 | 0x05;
or

TSCR2 = (TSCR2 & ~0x02) | 0x05;

» Write to all bits of a register when you know what all bits should
be, such as when you initialize it. Set or clear bits when you want
to change only one or a few bits and leave the others unchanged.

Lecture 12 EE 308 Spring 2016

C Program to implement a delay

#include <hidef.h>
#include "hcs12.h"

void delay(void);
main()
{
TSCR1 =TSCR1 | 0x80; /* Enable timer subsystem */
TSCR2 = 0x05; /* Set overflow time to 87 ms */
TFLG2 = 0x80; /* Make sure TOF bit clear */
while (1) {
PORTB = PORTB + 1;
delay();
}
}
void delay(void)
{
while ((TFLG2 & 0x80) == 0x00) ; /* Wait for timer */
/* overflow */
TFLG2 = 0x80; /* Clear TOF bit */
}

* Problem: Cannot do anything while waiting

* Solution: Interrupt — can do other things, and hardware will sig-
nal processor when overflow occurs

* Need to understand how processor handles exceptions — resets
and interrupts

» Start by looking at what happens when the MC9S12 is reset

Lecture 12

EE 308 Spring 2016

What Happens When You Reset the MC9S12?

» What happens to the MC9S12 when you turn on power or push
the reset button?

* How does the MC9S12 know which instruction to execute first?

* On reset the MC9S12 loads the PC with the address located at ad-

dress OXFFFE and O0xFFFF.

* Here is what is in the memory of our MC9S12:

0

1

2

3

L

&

[

8

9

FFFO

Fi&

EC

F5

FO

=

F& | F4

Fi&

F&

F5

FC

F7

D] E| F
0a g FO [00

 On reset or power-up, the first instruction your MC9S12 will exe-
cute is the one located at address 0xF000.

Lecture 12 EE 308 Spring 2016

Introduction to Interrupts
Can implement a delay by waiting for the TOF flag to become set:

void delay(void)

{
while ((TFLG2 & 0x80) ==0) ;
TFLG2 = 0x80;

Problem: Can’t do anything else while waiting.

Solution: Use an interrupt to tell you when the timer overflow has
occurred.

Interrupt: Allows the HCS12 to do other things while waiting for
an event to happen. When the event happens, tell HCS12 to take
care of event, then go back to what it was doing.

What happens when HCS12 gets an interrupt: HCS12
automatically jumps to part of the program which tells it what to
do when it receives the interrupt (Interrupt Service Routine).

How does HCS12 know where the ISR is located: A set of
memory locations called Interrupt Vectors tell the HCS12 the
address of the ISR for each type of interrupt.

Lecture 12 EE 308 Spring 2016

How does HCS12 know where to return to: Return address
pushed onto stack before HCS12 jumps to ISR. You use the RTI
(Return from Interrupt) instruction to pull the return address off of
the stack when you exit the ISR.

What happens if ISR changes registers: All registers are pushed
onto stack before jumping to ISR, and pulled off the stack before
returning to program. When you execute the RTT instruction at the
end of the ISR, the registers are pulled off of the stack.

What happens if you get an interrupt while in an ISR: MC9S512
disables interrupts (sets I bit of CCR) before it starts executing
ISR.

To Return from the ISR You must return from the ISR using the
RTT instruction. The RTT instruction tells the HCS12 to pull all the
registers off of the stack and return to the address where it was
processing when the interrupt occurred.

Lecture 12 EE 308 Spring 2016

How to generate an interrupt when the timer overflows

TIMER OVERFLOW INTERRUPT

vCC

I— TOF
D L#]

Read
(BT of TFLGZ, addr lx4F)

e~ el =
(B 7 of TECA1, addr Ixd6 PR[L0]
(Bits 2-0of TSCRZ, addr rdD) ToOF
Wirke
(BH T of TFLGZ addr x4F) 7
TOI Bl 1Bk
TSCR2 CCR
{Bie 7 of TRCAZ, addr Ix40) {Enable by ciearing I bitwith CLI Insr)
{Enable by seting Bit 7 of T3SCRD
To generate a TOF interrupt: Inside TOF ISR:
Enable timer (set Bit 7 of TSCR1) Take care of event
Set prescaler (Bits 2:0 of TSCR2) Clear TOF flag (Write 1 to Bit 7 of TFLG2)
Enable TOI interrupt (set Bit 7 of TSCR2) Return with RTI

Enable interrupts (clear I bit of CCR)

Lecture 12 EE 308 Spring 2016

#include <hidef.h>
#include "hcs12.h"

void interrupt toi_isr(void);

main()
{
_ _asm(sei); /* Disable interrupts */
DDRB = 0xff; /* Make Port B output */
TSCR1 = 0x80; /* Turn on timer */
TSCR2 = 0x85; /* Enable timer overflow interrupt, set */
/* prescaler */
TFLG2 = 0x80; /* Clear timer interrupt flag */

_ _asm(cli); /* Enable interrupts (clear I bit) */
while (1)
{
/* Put code here to do things */
}

void interrupt toi_isr(void)

{
PORTB = PORTB + 1; /* Increment Port B */
TFLG2 = 0x80; /* Clear timer interrupt flag */

