Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

¢ Addition and Subtraction of Hexadecimal Numbers
« Simple assembly language programming
o A simple Assembly Language Program
Assembling an Assembly Language Program
Simple 9512 programs
Hex code generated from a simple 9512 program
Things you need to know for 9512 assembly language
programming

(0]
0
(0]
(0]

« Introduction to Addressing Modes
o Most instructions operate on data in memory
o Addressing mode used to find address of data in
memory
o MCS9S12 Addressing modes: Inherent, Extended,
Direct, Immediate, Indexed, and Relative Modes

A Simple MC9S12 Program

* All programs and data must be placed in memory between ad-
dress 0x1000 and 0x3BFF. For our programs we will put the first
instruction at 0x2000, and the first data byte at 0x1000

* Consider the following program:

ldaa $1000 ; Put contents of memory at 0x1000 into A
inca ; Add one to A

staa $1001 ; Store the result into memory at 0x1001
swi ; End program

« If the first instruction is at address 0x2000, the following bytes in
memory will tell the MC9S12 to execute the above program:

Electrical Engineering

New Wexico nsiute of ining and Technology EE 308 Spring 2016

Address Value Instruction

0x2000 B6 ldaa $1000

0x2001 10

0x2002 00

0x2003 42 inca

0x2004 7A staa $1001

0x2005 10

0x2006 01

0x2007 3F Swi

» If the contents of address 0x1000 were 0xA2, the program would
put an 0xA3 into address 0x1001.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

A Simple Assembly L.anguage Program.

» It is difficult for humans to remember the numbers (op codes) for
computer instructions. It is also hard for us to keep track of the ad-
dresses of numerous data values. Instead we use words called
mnemonics to represent instructions, and labels to represent ad-
dresses, and let a computer programmer called an assembler to
convert our program to binary numbers (machine code).

* Here is an assembly language program to implement the previous
program:

prog equ $2000 ; Start program at 0x2000
data equ $1000 ; Data value at 0x1000

org prog

ldaa input
inca

staa result
swi

org data
input: dc.b $A2
result: ds.b 1

* We would put this code into a file and give it a name, such as
main.s. (Assembly language programs usually have the
extension .s or .asm.)

Electrical Engineering EE 308 Spring 2016
prin

New Mexico Institute of Mining and Technology

* Note that equ, org, dc.b and ds.b are not instructions for the
MC9S12 but are directives to the assembler which make it possi-
ble for us to write assembly language programs. There are called
assembler directives or pseudo-ops. For example the pseudo-op
org tells the assembler that the starting address (origin) of our pro-

gram should be 0x2000.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

Assembling an Assembly Language Program

» A computer program called an assembler can convert an
assembly language program into machine code.

* The assembler we use in class is a commercial compiler from
Freescale called CodeWarrior (Eclipse IDE).

* The assembler will produce a file called main.Ist, which shows
the machine code generated.

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj.code Source line

1 1

2 2 0000 2000 prog equ $2000 ; Start program at
0x2000

3 3 0000 1000 data equ $1000 ; Data value at
0x1000

4 4

5 5 org prog

6 6

7 7 2002000 B610 00 Idaa input

8 8 a002003 42 inca

9 9 a002004 7A10 01 staa result

10 10 a002007 3F swi

11 11

12 12 org data

13 13 a001000 A2 input: dc.b $A2

14 14 a001001 result: ds.b 1

This will produce a file called Project.abs.s19 which we load into
the MC9S12.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

S06B0000433A5C446F63756D656E747320616E642053657474696E67

73

S1051000A20048
S10B2000B61000427A10013F02
S9030000FC

The first line of the S19 file starts with a SO: the S0 indicates
that it is the first line.

The first line form CodeWarrior is too long for the DBug-12
monitor. You will need to delete it before loading the file
into the MC9S12.

The last line of the S19 file starts with a S9: the S9 indicates
that it is the last line.

The other lines begin with a S1: the S1 indicates these lines are
data to be loaded into the MC9S12 memory.

Here is the second line (with some spaces added):
S1 0B 2000 B6 1000 42 7A 1001 3F 02

On the second line, the S1 if followed by a 0B. This tells the
loader that there this line has 11 (0x0B) bytes of data follow.

The count OB is followed by 2000. This tells the loader that the
data (program) should be put into memory starting with address
0x2000.

The next 16 hex numbers B61000427A10013F are the 8 bytes
to be loaded into memory. You should be able to find these bytes
in the main.lIst file.

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

« The last two hex numbers, 0x02, is a one byte checksum, which
the loader can use to make sure the data was loaded correctly.

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009
Abs. Rel. Loc Obj. code Source line

1 1
2 2 0000 2000 prog equ $2000 ; Start program at
0x2000
3 3 0000 1000 data equ $1000 ; Data value at 0x1000
4 4
5 5 org prog
6 6
7 7 a002000 B610 00 Idaa input
8 8 a002003 42 inca
9 9 2002004 7A10 01 staa result
10 10 a002007 3F SWi
11 11
12 12 org data
13 13 a001000 A2 input: dc.b $A2
14 14 a001001 result: ds.b 1
What will program do?
* Idaa input : Load contents of 0x1000 into A
(0OxA2 into A)
* inca : Increment A
(0xA2 +1=0xA3->A)
* staa result : Store contents of A to address 0x1001
(OxA3 -> address 0x1001)
* Swi : Software interrupt (Return control to DBug-12

Monitor)

Electrical Engineering

New Mexico Institute of Mining and Technology

A simple MC9S12 program fragment

EE 308 Spring 2016

Simple Programs for the MC9S12

org

Idaa
asra
staa

$2000
$1000

$1001

A simple MC9S12 program with assembler directives

prog:
data:

input:
result:

equ $2000
equ $1000

org prog
ldaa input
asra
staa result
swi

org data
dc.b $07
ds.b 1

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

MC9S12 Programming Model — The registers inside the MC9S12
CPU the programmer needs to know about

Al 7 ol 7 o| B
1S 0D
15 ol X
15 o ¥
15 n| =
15 p| FC

R

S X H I N 2 V C

Things you need to know to write MC9S12 assembly language
programs

HC12 Assembly Language Programming
Programming Model
MC9S12 Instructions
Addressing Modes

Assembler Directives

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

Addressing Modes for the MC9S12
» Almost all MC9S12 instructions operate on memory

* The address of the data an instruction operates on is called the
effective address of that instruction.

* Each instruction has information which tells the MC9S12 the
address of the data in memory it operates on.

* The addressing mode of the instruction tells the MC9S12 how to
figure out the effective address for the instruction.

» Each MC9S12 instructions consists of a one or two byte op code
which tells the HCS12 what to do and what addressing mode to
use, followed, when necessary by one or more bytes which tell the
HCS12 how to determine the effective address.

— All two-byte op codes begin with an $18.
* For example, the LDAA instruction has 4 different op codes (86,

96, B6, A6), one for each of the 4 different addressing modes
(IMM, DIR, EXT, IDX).

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2016

LDAA

Operation

CCR
Effects

Code and
CPU
Cycles

Core User Guide — S12CPU15UG V1.2

LDAA

Load A

iMy=A
or
imm = A

L:oa||:|5 A with either the value in M or an immediate value.

§ X H I N Z VvV C

[-[-1-[-Tafafof-]

M: Set if MSEB of result is set; cleared otherwize
Z: Set if result iz $00; cleared otherwize
V- Cleared

Source Form Aﬂ%ﬁgs CE{?E?II-II-I:H CPU Cycles
LDAA #opri IMM Be i1l P
LDAA opria DIR 96 dd rDf
LOAA opriGa EXT B&éhh 11 rB0
LDAA oprx0_xysppc 10X Ag xb rDf
LDAA oprxD xysppc 101 he ¥xb £ rbo
LDAA oprx 16, xysppc D2 B& xb e £f frop
LDAA [D, xysppd] [OIDX] |ag xb FIfrPf
LDAA [oprx16,xysppc [DX2] AG xb ee £f fIDYDE

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

The MC9S12 has 6 addressing modes
Most of the HC12’s instructions access data in memory
There are several ways for the HC12 to determine which address to

dCcess

Effective address:
Memory address used by instruction

Addressing mode:
How the MC9S12 calculates the effective address

MC9S12 ADDRESSING MODES:
INH Inherent
IMM Immediate
DIR Direct
EXT Extended
REL Relative (used only with branch instructions)

IDX Indexed (won’t study indirect indexed mode)

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA ;AddBtoA(A)+(B) > A
18 06

CLRA ; ClearA0O - A

87

ASRA ; Arithmetic Shift Right A
47

TSTA ; Test A (A) — 0x00 Set CCR
97

The MC9S12 does not access memory

There is no effective address

0x1000 - 0x2000 18 n 62 97
35 06
x A2CS
02 a7
4n 47
C7 97

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

The Extended (EXT) addressing mode

Instructions which give the 16—bit address to be accessed

LDAA $1000 £ ($1000) — A

B6 10 00 Effective Address: $1000
LDX $1001 £ ($1001:$1002) — X
FE 10 01 Effective Address: $1001
STAB $1003 : (B) — $1003

7B 10 03 Effective Address: $1003

Effective address is specified by the two bytes following op
code

0x1000 9 0x2000 BE A 00 97
35 10
X AZCS
02 00
4 FE
- 10
01
7B
10
03

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

The Direct (DIR) addressing mode
Direct (DIR) Addressing Mode

Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 1 ($0020) — A

96 20 Effective Address: $0020
STX $21 1 (X) - $0021:$0022

5E 21 Effective Address: $0021

8 LSB of effective address is specified by byte following op
code

0x0020 qﬁ 0x2000 96 A 17 97
73 20
% 3502
Al SE
oA 21

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

The Immediate (IMM) addressing mode

Value to be used is part of instruction

LDAA #$17 :$17 - A

B6 17 Effective Address: PC + 1
ADDA #10 ; (A) + $0A > A

8B 0A Effective Address: PC + 1

Effective address is the address following the op code

0x1000 . 0x2000| g A 21 97
35 17
X 3502
02 8B
a O
c7

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

The Indexed (IDX, IDX1, IDX2) addressing mode
Effective address is obtained from X or Y register (or SP or PC)

Simple Forms

LDAA 0,X ; Use (X) as address to get value to put in A
A6 00 Effective address: contents of X
ADDAJ5SY ; Use (Y) + 5 as address to get value to add to
AB 45 Effective address: contents of Y + 5

More Complicated Forms

INC 2,X- ; Post—decrement Indexed
; Increment the number at address (X),
; then subtract 2 from X

62 3E Effective address: contents of X
INC 4,+X ; Pre—increment Indexed
;Add 4to X

; then increment the number at address (X)
62 23 Effective address: contents of X + 4

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2016

Different types of indexed addressing modes
(Note: We will not discuss indirect indexed mode)

INDEXED ADDRESSING MODES

(Does not include indirect modes)

Lﬂﬁ@ﬁ&i‘-ﬂ valie in X Repsters

Excample Adross Offact After Dome o Usa
Omnstant Offset IAA n,X (¥)+n 0 to FFEF (4] X Y, S, BPC
Omstant Offsat IAA -n, X (¥)-n | 0 to FFEF (4] ¥ Y, S, BC
Postincranent LIAA n, X+ (WA lto 8)+ X Y, 5P
Fooancroment R {(X)+n l1to 8 (X)+n X Y, 5P
Postdecranent IDAA N, 3 (X l1to 8 (X)—n X Y, 5P
Foxdbcroment: IAA 0 —X {(X)—n l1to 8 (X)—n X Y, 5P
AOC Offset IOBA A, X (X+a) | 0toFF (X) ¥ Y, S8, BC

IOAA B, X +E) | 0toFF

IDAA D, X ()+@) | 0 to FEEF

The data books list three different types of indexed modes:

» Table 4.2 of the Core Users Guide shows details

« IDX: One byte used to specify address

— Called the postbyte
— Tells which register to use
— Tells whether to use autoincrement or autodecrement
— Tells offset to use

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

» IDX1: Two bytes used to specify address
— First byte called the postbyte
— Second byte called the extension
— Postbyte tells which register to use, and sign of offset
— Extension tells size of offset

» IDX2: Three bytes used to specify address
— First byte called the postbyte
— Next two bytes called the extension
— Postbyte tells which register to use
— Extension tells size of offset

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2016

Table 3-1. M6BHC12 Addressing Mode Summary

(D accumulator offsaf)

Addrassing Moda Source Format | Abbreviation Description
INST
Inharant (no axtamally IMNH Operands (if any) are in CPU rogistars
supplied cparands)
Immediate IMSTG‘T':W& MM Operand is ipn:l!Jl:Ia_d in _instructic:-n stream
INST #0pr 16i 8- or 16-bit size implied by context
. Operand is the lower 8 bits of an addrass
Diract INST opr2a DIR in the range $00 OOFE
Extanded INST apriga EXT Operand is a 16-bit address
Relativa INE;'@'IS AEL An_ &-bit ar 113-_I:|'rt relgm'va -::-ﬂfset from the current pc
INST ral16 iz supplied in the instruction
Indexed 5-bil signed constant ofizat
(5-bit offset] INST oprxs,xysp DX from X, Y, SP, or PC
Indexed
(pre-dacramant] INST oprx3—xys DX Auto pre-decremant x, y, orspby 1 - 8
Indexad)
(pre-increment] INST oprx3+xys DX Auto pre-increment X, ¥, orspby 1 -8
Indexed
(post-decrement] INST oprx3,xys— DX Auto post-decroment x, v, orspby 1 - 8
Indexed .
(post-incrament) INST oprx3.xys+ DX Auto post-increment X, y,orspby1 - 8
Indexed Indexed with 8-bit (A or B) or 16-bit (D)
(accumulator offzaf) INST abd.xysp DX accumulator ofizet from X, Y, 5P, or PC
Indexad 2-bit signed constant ofizet from X, Y, SP, or PC
(3-bit offzet) INST oprxg,xysp DX {lower & bits of offsal in one exdension byta)
Indexad 18-bit constant offset from X, Y, 5P, or PC
{16-bit offset) INST oprc16,.xysp Dz {16-bit offset in two extension bytes)
) Pointer to oparand is found at...
“ﬁgﬁ_lﬁﬁi?g;m INST [opine 6.xy50] [1Dx2] 16-bit constant offzet from X, Y, 3P, or PC
(16-bit off=et in two extansion bytes)
Indexed-Indiract INST [D] [D.IDX] Pointer to oparand is found at...

x. Y, 3P, or PC plus the value in D

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long
branch instructions.

Branch instruction: One byte following op code specifies how far
to branch

Treat the offset as a signed number; add the offset to the address
following the current instruction to get the address of the
instruction to branch to

(BRA) 2035 PC + 2+ 0035 — PC

(BRA) 20 C7PC+2+FFC7 — PC
PC +2 - 0039 — PC

Long branch instruction: Two bytes following op code specifies
how far to branch

Treat the offset as an unsigned number; add the offset to the
address following the current instruction to get the address of the
instruction to branch to

(LBEQ) 18 27 02 1A If Z == 1 then PC + 4 + 021A — PC
If Z == 0 then PC + 4 — PC

When writing assembly language program, you don’t have to
calculate offset

Electrical Engineering

New Mexico Institute of Mining and Technology EE 308 Spring 20 16

You indicate what address you want to go to, and the assembler
calculates the offset

0x2020 BRA $2030 ; Branch to instruction at
; address $2030

Ox2020 20 BC 2020

0E

Electrical Engineering

New Mexico Institute of Mining and Technology

EE 308 Spring 2016

Summary of HCS12 addressing modes

ADDRESSING MODES
Effective
Hame Example Op Code Address

INH Inherent ABA 18 06 None

IMM Immediate LDAR #3535 86 35 PC + 1

DIE Direct LDAR 535 96 35 Ox0035

EXT Extendad LDAR 52035 BE& 20 35 Ox2035

IDX Indexed LDAR 3, X A6 03 X+ 3

IDX1 LDAR 30,X A6 EOQO 13 X 4+ 30

IDX2 LDAR 300,X A6 E2 01 2C X + 300

IDX Indexed LDAR 3, X+ A& 32 X (X+3 —> X)
FPostincreament

IDX Indexed LDAR 3, +X A6 22| X+3 (X443 -> X)
Freincremant

IDX Indexed LDAA 3, X- A6 3D X (X-3 -> X)
Postdecrement

IDX Indexed LDAA 3, -X A6 2D X-3 (X-3 -> X)
Predecrament

REL Relative BEA 51050 20 23 PC 4+ 2 + 0Offset

LEEA S51F00 18 20 OE CF PFC + 4 + O0ffset

Electrical Engineering EE 308 Spring 2016
prin

New Mexico Institute of Mining and Technology

A few instructions have two effective addresses:

* MOVB $2000,$3000 ;move byte from address $2000 to
:$3000

* MOVW 0,X,0,Y ;move word from address pointed to
; by X to address pointed to by Y

