
EE 308 Spring 2016

 Addition and Subtraction of Hexadecimal Numbers
 Simple assembly language programming

o A simple Assembly Language Program
o Assembling an Assembly Language Program
o Simple 9S12 programs
o Hex code generated from a simple 9S12 program
o Things you need to know for 9S12 assembly language

programming

 Introduction to Addressing Modes
o Most instructions operate on data in memory
o Addressing mode used to find address of data in

memory
o MC9S12 Addressing modes: Inherent, Extended,

Direct, Immediate, Indexed, and Relative Modes

A Simple MC9S12 Program

• All programs and data must be placed in memory between ad-
dress 0x1000 and 0x3BFF. For our programs we will put the first
instruction at 0x2000, and the first data byte at 0x1000

• Consider the following program:

ldaa $1000 ; Put contents of memory at 0x1000 into A
inca ; Add one to A
staa $1001 ; Store the result into memory at 0x1001
swi ; End program

• If the first instruction is at address 0x2000, the following bytes in
memory will tell the MC9S12 to execute the above program:

EE 308 Spring 2016

Address Value Instruction
0x2000 B6 ldaa $1000
0x2001 10
0x2002 00
0x2003 42 inca
0x2004 7A staa $1001
0x2005 10
0x2006 01
0x2007 3F swi

• If the contents of address 0x1000 were 0xA2, the program would
put an 0xA3 into address 0x1001.

EE 308 Spring 2016

A Simple Assembly Language Program.

• It is difficult for humans to remember the numbers (op codes) for
computer instructions. It is also hard for us to keep track of the ad-
dresses of numerous data values. Instead we use words called
mnemonics to represent instructions, and labels to represent ad-
dresses, and let a computer programmer called an assembler to
convert our program to binary numbers (machine code).

• Here is an assembly language program to implement the previous
program:

prog equ $2000 ; Start program at 0x2000
data equ $1000 ; Data value at 0x1000

org prog

ldaa input
inca
staa result
swi

org data
input: dc.b $A2
result: ds.b 1

• We would put this code into a file and give it a name, such as
main.s. (Assembly language programs usually have the
extension .s or .asm.)

EE 308 Spring 2016

• Note that equ, org, dc.b and ds.b are not instructions for the
MC9S12 but are directives to the assembler which make it possi-
ble for us to write assembly language programs. There are called
assembler directives or pseudo-ops. For example the pseudo-op
org tells the assembler that the starting address (origin) of our pro-
gram should be 0x2000.

EE 308 Spring 2016

Assembling an Assembly Language Program

• A computer program called an assembler can convert an
assembly language program into machine code.

• The assembler we use in class is a commercial compiler from
Freescale called CodeWarrior (Eclipse IDE).

• The assembler will produce a file called main.lst, which shows
the machine code generated.

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
1 1
2 2 0000 2000 prog equ $2000 ; Start program at
0x2000
3 3 0000 1000 data equ $1000 ; Data value at
0x1000
4 4
5 5 org prog
6 6
7 7 a002000 B610 00 ldaa input
8 8 a002003 42 inca
9 9 a002004 7A10 01 staa result
10 10 a002007 3F swi
11 11
12 12 org data
13 13 a001000 A2 input: dc.b $A2
14 14 a001001 result: ds.b 1

This will produce a file called Project.abs.s19 which we load into
the MC9S12.

EE 308 Spring 2016

S06B0000433A5C446F63756D656E747320616E642053657474696E67
73
S1051000A20048
S10B2000B61000427A10013F02
S9030000FC

 The first line of the S19 file starts with a S0: the S0 indicates
that it is the first line.

- The first line form CodeWarrior is too long for the DBug-12
monitor. You will need to delete it before loading the file
into the MC9S12.

 The last line of the S19 file starts with a S9: the S9 indicates
that it is the last line.

 The other lines begin with a S1: the S1 indicates these lines are
data to be loaded into the MC9S12 memory.

 Here is the second line (with some spaces added):

S1 0B 2000 B6 1000 42 7A 1001 3F 02

 On the second line, the S1 if followed by a 0B. This tells the
loader that there this line has 11 (0x0B) bytes of data follow.

 The count 0B is followed by 2000. This tells the loader that the
data (program) should be put into memory starting with address
0x2000.

 The next 16 hex numbers B61000427A10013F are the 8 bytes
to be loaded into memory. You should be able to find these bytes
in the main.lst file.

EE 308 Spring 2016

 The last two hex numbers, 0x02, is a one byte checksum, which
the loader can use to make sure the data was loaded correctly.

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009
Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------
1 1
2 2 0000 2000 prog equ $2000 ; Start program at
0x2000
3 3 0000 1000 data equ $1000 ; Data value at 0x1000
4 4
5 5 org prog
6 6
7 7 a002000 B610 00 ldaa input
8 8 a002003 42 inca
9 9 a002004 7A10 01 staa result
10 10 a002007 3F swi
11 11
12 12 org data
13 13 a001000 A2 input: dc.b $A2
14 14 a001001 result: ds.b 1

What will program do?

• ldaa input : Load contents of 0x1000 into A
(0xA2 into A)

• inca : Increment A
(0xA2 + 1 = 0xA3 -> A)

• staa result : Store contents of A to address 0x1001
(0xA3 -> address 0x1001)

• swi : Software interrupt (Return control to DBug-12
Monitor)

EE 308 Spring 2016

Simple Programs for the MC9S12

A simple MC9S12 program fragment

org $2000
ldaa $1000
asra
staa $1001

A simple MC9S12 program with assembler directives

prog: equ $2000
data: equ $1000

org prog
ldaa input
asra
staa result
swi

org data
input: dc.b $07
result: ds.b 1

EE 308 Spring 2016

MC9S12 Programming Model — The registers inside the MC9S12
CPU the programmer needs to know about

Things you need to know to write MC9S12 assembly language
programs

HC12 Assembly Language Programming

Programming Model

MC9S12 Instructions

Addressing Modes

Assembler Directives

EE 308 Spring 2016

Addressing Modes for the MC9S12

• Almost all MC9S12 instructions operate on memory

• The address of the data an instruction operates on is called the
effective address of that instruction.

• Each instruction has information which tells the MC9S12 the
address of the data in memory it operates on.

• The addressing mode of the instruction tells the MC9S12 how to
figure out the effective address for the instruction.

• Each MC9S12 instructions consists of a one or two byte op code
which tells the HCS12 what to do and what addressing mode to
use, followed, when necessary by one or more bytes which tell the
HCS12 how to determine the effective address.

– All two-byte op codes begin with an $18.

• For example, the LDAA instruction has 4 different op codes (86,
96, B6, A6), one for each of the 4 different addressing modes
(IMM, DIR, EXT, IDX).

EE 308 Spring 2016

EE 308 Spring 2016

The MC9S12 has 6 addressing modes

Most of the HC12’s instructions access data in memory
There are several ways for the HC12 to determine which address to
access

Effective address:
Memory address used by instruction

Addressing mode:
How the MC9S12 calculates the effective address

MC9S12 ADDRESSING MODES:

INH Inherent

IMM Immediate

DIR Direct

EXT Extended

REL Relative (used only with branch instructions)

IDX Indexed (won’t study indirect indexed mode)

EE 308 Spring 2016

The Inherent (INH) addressing mode

Instructions which work only with registers inside ALU

ABA ; Add B to A (A) + (B) A
18 06

CLRA ; Clear A 0 A
87

ASRA ; Arithmetic Shift Right A
47

TSTA ; Test A (A) − 0x00 Set CCR
97

The MC9S12 does not access memory

There is no effective address

EE 308 Spring 2016

The Extended (EXT) addressing mode

Instructions which give the 16−bit address to be accessed

LDAA $1000 ; ($1000) A
B6 10 00 Effective Address: $1000

LDX $1001 ; ($1001:$1002) X
FE 10 01 Effective Address: $1001

STAB $1003 ; (B) $1003
7B 10 03 Effective Address: $1003

Effective address is specified by the two bytes following op
code

EE 308 Spring 2016

The Direct (DIR) addressing mode

Direct (DIR) Addressing Mode

Instructions which give 8 LSB of address (8 MSB all 0)

LDAA $20 ; ($0020) A
96 20 Effective Address: $0020

STX $21 ; (X) $0021:$0022
5E 21 Effective Address: $0021

8 LSB of effective address is specified by byte following op
code

EE 308 Spring 2016

The Immediate (IMM) addressing mode

Value to be used is part of instruction

LDAA #$17 ; $17 A
B6 17 Effective Address: PC + 1

ADDA #10 ; (A) + $0A A
8B 0A Effective Address: PC + 1

Effective address is the address following the op code

EE 308 Spring 2016

The Indexed (IDX, IDX1, IDX2) addressing mode

Effective address is obtained from X or Y register (or SP or PC)

Simple Forms

LDAA 0,X ; Use (X) as address to get value to put in A
A6 00 Effective address: contents of X

ADDA 5,Y ; Use (Y) + 5 as address to get value to add to
AB 45 Effective address: contents of Y + 5

More Complicated Forms

INC 2,X− ; Post−decrement Indexed
; Increment the number at address (X),
; then subtract 2 from X

62 3E Effective address: contents of X

INC 4,+X ; Pre−increment Indexed
; Add 4 to X
; then increment the number at address (X)

62 23 Effective address: contents of X + 4

EE 308 Spring 2016

Different types of indexed addressing modes
(Note: We will not discuss indirect indexed mode)

INDEXED ADDRESSING MODES
(Does not include indirect modes)

The data books list three different types of indexed modes:

• Table 4.2 of the Core Users Guide shows details

• IDX: One byte used to specify address
– Called the postbyte
– Tells which register to use
– Tells whether to use autoincrement or autodecrement
– Tells offset to use

EE 308 Spring 2016

• IDX1: Two bytes used to specify address
– First byte called the postbyte
– Second byte called the extension
– Postbyte tells which register to use, and sign of offset
– Extension tells size of offset

• IDX2: Three bytes used to specify address
– First byte called the postbyte
– Next two bytes called the extension
– Postbyte tells which register to use
– Extension tells size of offset

EE 308 Spring 2016

EE 308 Spring 2016

Relative (REL) Addressing Mode

The relative addressing mode is used only in branch and long
branch instructions.

Branch instruction: One byte following op code specifies how far
to branch

Treat the offset as a signed number; add the offset to the address
following the current instruction to get the address of the
instruction to branch to

(BRA) 20 35 PC + 2 + 0035 PC

(BRA) 20 C7 PC + 2 + FFC7 PC
 PC + 2 − 0039 PC

Long branch instruction: Two bytes following op code specifies
how far to branch

Treat the offset as an unsigned number; add the offset to the
address following the current instruction to get the address of the
instruction to branch to

(LBEQ) 18 27 02 1A If Z == 1 then PC + 4 + 021A PC
 If Z == 0 then PC + 4 PC

When writing assembly language program, you don’t have to
calculate offset

EE 308 Spring 2016

You indicate what address you want to go to, and the assembler
calculates the offset

0x2020 BRA $2030 ; Branch to instruction at
; address $2030

EE 308 Spring 2016

Summary of HCS12 addressing modes

ADDRESSING MODES

EE 308 Spring 2016

A few instructions have two effective addresses:

• MOVB $2000,$3000 ;move byte from address $2000 to
;$3000

• MOVW 0,X,0,Y ;move word from address pointed to
; by X to address pointed to by Y

