

- MC9S12 Assembler Directives
- A Summary of MC9S12 Instructions
- Disassembly of MC9S12 op codes
 - Review of Addressing Modes
 - Which branch instruction to use (signed vs unsigned)
 - Using X and Y registers as pointers
 - Hand assembling a program
 - o How long does a program take to run?
 - Assembler directives
 - How to disassemble an MC9S12 instruction sequence

Summary of HCS12 addressing modes

ADDRESSING MODES

Name		Example	Op Code	Effective Address
INH	Inherent	ABA	18 06	None
IMM	Immediate	LDAA #\$35	86 35	PC + 1
DIR	Direct	LDAA \$35	96 35	0x0035
EXT	Extended	LDAA \$2035	B6 20 35	0x2035
IDX IDX1 IDX2	Indexed	LDAA 3,X LDAA 30,X LDAA 300,X	A6 03 A6 E0 13 A6 E2 01 2C	X + 3 X + 30 X + 300
IDX	Indexed Postincrement	LDAA 3,X+	A6 32	x (x+3 -> x)
IDX	Indexed Preincrement	LDAA 3,+X	A6 22	X+3 (X+3 -> X)
IDX	Indexed Postdecrement	LDAA 3,X-	A6 3D	x (x-3 -> x)
IDX	Indexed Predecrement	LDAA 3,-X	A6 2D	X-3 (X-3 -> X)
REL	Relative	BRA \$1050 LBRA \$1F00	20 23 18 20 0E CF	PC + 2 + Offset PC + 4 + Offset

A few instructions have two effective addresses:

• **MOVB #\$AA,\$1C00** Move byte 0xAA (IMM) to address

\$1C00 (EXT)

• **MOVW 0,X,0,Y** Move word from address pointed to by

X (IDX) to address pointed to by Y

(IDX)

A few instructions have three effective addresses:

• **BRSET FOO,#\$03,LABEL** Branch to LABEL (REL) if bits #\$03 (IMM) of variable FOO (EXT) are set.

Using X and Y as Pointers

- Registers X and Y are often used to point to data.
- To initialize pointer use

ldx #table

not

ldx table

• For example, the following loads the address of table (\$1000) into X; i.e., X will point to table:

ldx #table ; *Address of table* \Rightarrow *X*

The following puts the first two bytes of table (\$0C7A) into X. X will **not** point to table:

ldx table ; *First two bytes of table* $\Rightarrow X$

• To step through table, need to increment pointer after use

ldaa 0,x inx

or

ldaa 1,x+

table 0C 7A D5 00 61 62

table: dc.b 12,122,-43,0 dc.b 'a','b','c','d'

Which branch instruction should you use?

Branch if A > BIs 0xFF > 0x00?

If unsigned, 0xFF = 255 and 0x00 = 0, so 0xFF > 0x00

If signed, 0xFF = -1 and 0x00 = 0, so 0xFF < 0x00

Using unsigned numbers: **BHI** (checks C bit of CCR)

Using signed numbers: **BGT** (checks V bit of CCR)

For unsigned numbers, use branch instructions which check C bit

For signed numbers, use branch instructions which check V bit

EE 308

Hand Assembling a Program

To hand-assemble a program, do the following:

- 1. Start with the org statement, which shows where the first byte of the program will go into memory.
- (e.g., **org** \$2000 will put the first instruction at address \$2000.)
- **2**. Look at the first instruction. Determine the addressing mode used.
- (e.g., **ldab** #**10** uses IMM mode.)
- 3. Look up the instruction in the MC9S12 S12CPUV2 Reference **Manual**, find the appropriate Addressing Mode, and the Object Code for that addressing mode. (e.g., **ldab IMM** has object code **C6 ii.)**
 - Table A.1 of the S12CPUV2 Reference Manual has a concise summary of the instructions, addressing modes, op-codes, and cycles.
- **4.** Put in the object code for the instruction, and put in the appropriate operand. Be careful to convert decimal operands to hex operands if necessary. (e.g., **ldab** #10 becomes **C6 0A**.)
- **5.** Add the number of bytes of this instruction to the address of the instruction to determine the address of the next instruction. (e.g., \$2000 + 2 = \$2002 will be the starting address of the next instruction.)

org \$2000 ldab #10 loop: clra

dbne b,loop

swi

Freescale HC12-Assembler (c) Copyright Freescale 1987-2010

Abs. Rel. Loc Obj. code Source line

1 1 2 2 0000 2000 prog: equ \$2000 3 3 org prog 4 a002000 C60A ldab #10 5 a002002 87 loop: clra 6 a002003 0431 FC dbne b,loop 7 a002006 3F swi

Table A-1. Instruction Set Summary (Sheet 7 of 14)

		Addr.	Machine		Access Detail		
Source Form	Operation	Mode	Coding (hex)	HCS12	M68HC12	SXHI	NZVC
LBGT rah 6	Long Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	18 2E qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBHI rohe	Long Branch if Higher (if C + Z = 0) (unsigned)	REL	18 22 qq rr	OPPP/OPOl	OPPP/OPO ¹		
LBHS raft 6	Long Branch if Higher or Same (if C = 0) (unsigned) same function as LBCC	REL	18 24 qq rr	0999/0901	0PPP/0PO ¹		
LBLE raft 6	Long Branch if Less Then or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	18 2F qq rr	OPPP/OPOl	OPPP/OPO ¹		
LBLO rehs	Long Branch if Lower (if C = 1) (unsigned) same function as LBCS	REL	18 25 qq rr	0999/0901	0PPP/0PO ¹		
LBLS rah e	Long Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	18 23 qq rr	OPPP/OPO ¹	OPPP/OPO*		
LBLT reh6	Long Branch if Less Than (if N ⊕ V = 1) (signed)	REL	18 2D qq rr	OPPP/OPOl	OPPP/OPO ¹		
LBMI rel 18	Long Branch if Minus (if N = 1)	REL	18 2B qq rr	OFFF/OFO ¹	OPPP/OPO ¹		
LBNE ralt 6	Long Branch if Not Equal (if Z = 0)	REL	18 26 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBPL raft 6	Long Branch if Plus (if N = 0)	REL	18 2A qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBRA raft 6	Long Branch Always (f 1-1)	REL	18 20 qq rr	OPPP	OPPP		
LBRN ral 16	Long Branch Never (f 1 = 0)	REL	18 21 qq rr	090	OPO		
LBVC raft 6	Long Branch if Overflow Bit Clear (if V=0)	REL	18 28 qq rr	OFFF/OFO ¹	OPPP/OPO ¹		
LBVS rehts	Long Branch if Overflow Bit Set (if V = 1)	REL	18 29 qq rr	OPPP/OPO ¹	орру/оро1		
LDAA apprai LDAA opraa LDAA opraa xysp LDAA opraa xysp LDAA opraa xysp LDAA opraa xysp LDAA (pysp) LDAA (pysp) LDAA (pysa)	(M) → A Load Accumulator A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	86 11 96 dd 86 hh 11 A6 xb A6 xb ff A6 xb ff A6 xb ee ff A6 xb	P	9 169 109 169 190 1181 1191		ΔΔ0-
LDAB stopnel LDAB operio LDAB operio LDAB operio LDAB operio LDAB operio LDAB operio LDAB (D.xysp) LDAB (D.xysp) LDAB (D.xysp) LDAB (D.xysp) LDAB (operio LDAB (operio LDAB (operio LDAB)	(M) → B Load Accumulator B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C6 11 D6 dd F6 hh 11 E6 xb E6 xb ff E6 xb ge ff E6 xb ge ff E6 xb ge ff	P	9 169 169 170 1879 1818		ΔΔ0-
LDD topritii LDD opritii LDD opritii LDD opritii LDD opritii LDD opritiii LDD opritiiii LDD opritiiiii LDD opritiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	(M:M+1) → A:B Load Double Accumulator D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CC jj kk DC dd FC hh 11 EC xb EC xb ff EC xb ff EC xb se ff EC xb se ff	PO RPE RPO RPE RPO ERPP EIERPE EIERPE	0F 26F 26F 2F0 2F0 5ZF7 5ZFF 5ZFF 5ZFF		ΔΔ0-

Note 1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction quaue if the branch is taken and three cycles if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 3 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (box)	Access Deta	MESHC12	SXHI	NZVC
DIO - h	Proch 21 con a Con-	REL	Coding (hex)	HCS12			
BLS als	Branch if Lower or Same (if C + Z = 1) (unsigned)	HEL	23 rr	PPP/P1	PPP/P*		
BLT ral8	Branch if Less Than (if N ⊕ V = 1) (signed)	REL	2D rr	ppp/pl	ppp/pl		
BMI rub	Branch if Minus (if N = 1)	REL	2B rr	999/p ¹	PPP/p ¹		
BNE rol8	Branch if Not Equal (if Z = 0)	REL	26 rr	PPP/p ¹	ppp/p ¹		
BPL mB	Branch if Plus (if N = 0)	REL	2A rr	ppp/p ¹	₽₽₽/₽ ¹		
BRAnelB	Branch Always (if 1 = 1)	REL	20 rr	222	PPP		
BROLR oprise, make, rate	Branch if (M) • (mm) = 0 (if All Selected Bit(s) Clear)	DIR	4F dd mm rr 1F hh 11 mm rr	1979 1999	r999 rE999		
BROLR opri6a, msk8, ral8 BROLR opri0_xysp, msk8, ral8	(II All Selected Bit(s) Clear)	IDX	OF xb mm rr	1979	1555		
BROLR oproxyxysp, make, rede		IDX1	OF xb ff mm rr	rfppp	rffppp		
BRCLR opnx16_xysp, msk8, rul8	D. I. N. G. al.	IDX2	OF xb ee ff mm rr	Prippp	ErPEEPPP		
BRN rails	Branch Never (if 1 = 0)	REL	21 rr	P	P		
BRSET opr8, msk8, ral8 BRSET opr18a, msk8, ral8	Branch if (M) • (mm) = 0	DIR	4E dd mm rr 1E hh 11 mm rr	1999 1999	rPFF rEFFF		
BRSET opmo xysp, msk8, ral8	(if All Selected Bit(s) Set)	IDX	OR xb mm rr	IPPP	rPPP		
BRSET oprotizysp, msk8, rel8 BRSET oprotiExysp, msk8, rel8		IDX1 IDX2	OR xb ff mm rr OR xb ee ff mm rr	rfppp prfppp	rffppp frpffppp		
BSET opr8, msk8	$(M) + (mm) \rightarrow M$	DIR	4C dd mn	rPw0	rPOw		ΔΔ0-
BSET opr16s, msk8	Set Bit(s) in Memory	EXT	1C hh 11 mm	rPeP	rFFw		AAU-
BSET opnx0_xysp, msk8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IDX	OC xb mm	rPw0	rPOw		
BSET opnx0,xysp, msk8 BSET opnx16,xysp, msk8		IDX1 IDX2	OC xb ff mm OC xb se ff mm	rPwP frPwPO	rPwP ErPwOP		
BSR role	$(SP) - 2 \rightarrow SP$; $HTN_H; HTN_L \rightarrow M_SP; M_SP+1$	REL	07 rr	SPPP	PPPS		
barries	Subroutine address → PC	HEL	07 11		*****		
	Branch to Subroutine						
BVC reds	Branch if Overflow Bit Clear (if V = 0)	REL	28 rr	ppp/p1	PPP/P1		
BVS ral8	Branch if Overflow Bit Set (if V = 1)	REL	29 rr	999/p ¹	PPP/P1		
CALL opri8a, page CALL opri0_xysp, page	$(SP) - 2 \rightarrow SP$; $HTN_{LC}HTN_{L} \rightarrow M_{(SP)}M_{(SP+1)}$ $(SP) - 1 \rightarrow SP$; $(PPG) \rightarrow M_{(SP)}$	EXT	4A hh 11 pg 4B xb pg	gnSePPP gnSePPP	gnfSaPFF gnfSaPFF		
CALL oprixit xysp, page	pg → PPAGE register; Program address → PC	IDX1	4B xb ff pg	gnSaPPP	gnfSarrr		
CALL oprort6 xysp, page		10002	4B xb ee ff pg	fgnSaPPP	fgnfSæPPP		
CALL [D, xysp] CALL [opox16, xysp]	Call subroutine in extended memory (Program may be located on another	[D,IDX] [IDX2]	4B xb ee ff	flignSaPPP flignSaPPP	flignSaPPP flignSaPPP		
CALL [obs./ of xlob)	expansion memory page.)	(itota)	40 XD 66 11	111gillarrr	g.warrr		
	Life de la						
	Indirect modes get program address and new pg value based on pointer.						
CBA	(A) – (B) Compare 8-Bit Accumulators	INH	18 17	00	00		ΔΔΔΔ
CLC	0 → C	IMM	10 FE	P	P		0
	Translates to ANDCC #\$FE						
CLI	0 → 1 Translates to ANDCC #SEF	IMM	10 RF	P	P	0	
	(anablas I-bit interrupts)						
CLR opr18a	0 → M Clear Memory Location	EXT	79 hh 11	PwO	WOP		0100
CLR opnic_xysp		IDX	69 xb	Pw	Pw		
CLR oprasil xysp CLR oprasili xysp		IDX1 IDX2	69 xb ff 69 xb ee ff	Pw0 PwP	PwP		
CLR [D,xysp]		[D,IDX]	69 xb	PIfw	PIEPW		
CLR [oprox16,xysp] CLRA	O A Class Assumulation A	[IDX2]	69 xb se ff	PIPw	PIPPW		
CLRB	0 → A Clear Accumulator A 0 → B Clear Accumulator B	INH	87 C7	0	0		
CLV	0 → V	IMM	10 FD	P	P		0-
	Translates to ANDCC #\$FD						

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 4 of 14)

		Addr.	Machine	Access Detail		
Source Form	Operation	Mode	Coding (hex)	HCS12 M68HC12	SXHI	NZVC
CMPB #apr8i	(E) - (M)	MM	C1 11	P	1	$\Delta\Delta\Delta\Delta\Delta$
CMPB opr8s	Compare Accumulator B with Memory	DIR	D1 dd F1 hh 11	r9f rf1		
CMPB opri6a CMPB opri0_xysp		IDX	F1 nn 11	rpf rf:		
CMPB optx0_xysp		IDX1	El xb ff	r90 r90		
CMPB oprox16,xysp		IDX2	El xb ee ff	free free		
CMPB [D,xysp]		[D,IDX]	El xb	fifepf fifefi		
CMPB [qp/xr16,xysp]		[IDX2]	El xb ee ff	firerf firef:	,	ll
COM opr18a	$(\overline{M}) \rightarrow M$ equivalent to SFF $-(M) \rightarrow M$	EXT	71 hh 11	r9w0 r099		$\Delta\Delta01$
COM apmo_xysp	1's Complement Memory Location	IDX	61 xb	15A 15		
COM oprxii),xysp		IDX1 IDX2	61 xb ff	rPw0 rP00 frPwP frPP0		ll
COM oproc16,xysp COM [D,xysp]		ID,IDXI	61 xb ee ff 61 xb	fifre fifre	1	ll
COM [oprx16,xysp]	CO . A Complement Assessed to A	1DX21	61 xb ee ff	firePw firePo		ll
COMA	(A) → A Complement Accumulator A	"INH"	41	0 0		ll
COMB	(B) → B Complement Accumulator B	INH	51	0 (0	
CPD #opr16i	(A:B) - (M:M+1)	IMM	8C jj kk	PO DI		$\Delta\Delta\Delta\Delta\Delta$
CPD opirSa	Compare D to Memory (16-Bit)	DIR	9C dd	RPf Rf:		
CPD opr18a		EXT	BC hh 11	RPO ROS	1	ll
CPD aprix0_xysp		IDX IDX1	AC xb AC xb ff	RPF RF1		ll
CPD opnx9,xysp CPD opnx16,xysp		IDX1	AC xb se ff	ERPP ERP		ll
CPD [D,xysp]		ID,IDXI	AC xb cc 11	fifapf fifafi		ll
CPD [oprx16,xysp]		[1002]	AC xb ee ff	firer firef		
CPS#apr16i	(SP) - (M:M+1)	IMM	8F jj kk	PO O		$\Delta\Delta\Delta\Delta\Delta$
CPS oprise	Compare SP to Memory (16-Bit)	DIR	9F dd	RPf Rf:		
CPS opr16a		EXT	BF hh 11	RPO RO	1	
CPS oprx0_xysp		IDX	AF xb	RPE RE		ll
CPS oproxysp		IDX1 IDX2	AF xb ff	RPO RPO FRED FRED		ll
CPS opnx18,xysp CPS [D,xysp]		ID,IDXI	AF xb ee ff AF xb	fifRPf fifRf:	1	ll
CPS [aprx:16,xysp]		100021	AF xb ee ff	figge figge		ll
CPX #aport &i	(X) - (M:M+1)	IMM	8E 11 kk	PO 01		ΔΔΔΔ
CPX oprSu	Compare X to Memory (16-Bit)	DIR	9E dd	RPE RE	,	
CPX opr16a		EXT	BE hh 11	RPO ROS		ll
CPX opni0_xysp		IDX	AE xb	RPE RE		ll
CPX oprx9,xysp		IDX1	AE xb ff	RPO RPO	1	ll
CPX oprox18,xysp CPX [D,xysp]		IDX2 ID,IDX1	AE xb ee ff AE xb	free free		ll
CPX [oprat6,xysp]		[DX2]	AE xb se ff	figge figge		
CPY #apr16i	(Y) - (M:M+1)	IMM	8D 11 kk	PO 01	_	ΔΔΔΔ
CPY oprSu	Compare Y to Memory (16-Bit)	DIR	9D dd	RPf RF	1	адаа
CPY opri6a		EXT	BD hh 11	RPO RO		ll
CPY opnio_xysp		IDX	AD xb	RPf Rf:	,	ll
CPY oprx9.xysp		IDX1	AD xb ff	RPO RPO		ll
CPY oprx16 xysp		IDX2	AD xb ee ff	free free		ll
CPY [D,xysp] CPY [aprx:16,xysp]		[D,IDX] 11DX(21	AD xb AD xb ee ff	firef firef	1	ll
DAA	Adjust Sum to BCD	INH	18 07	ofo of		ΔΔ7Δ
	Decimal Adjust Accumulator A					
DBEQ abdays, relit	(ontr) – 1→ ontr	REL	04 1b rr	PFF (branch) FFF		
	if (cntr) = 0, then Branch	(9-bit)		PPO (no		
	else Continue to next instruction			branch)		
	Decrement Counter and Branch if = 0					
	(ontr = A, B, D, X, Y, or SP)					
DBNE abdxys, ral9	(ontr) - 1 → ontr	REL	04 lb rr	PPP (branch) PPI		
	If (ontr) not = 0, then Branch;	(G-bit)		PPO (no	1	
	else Continue to next instruction			branch)	1	
	Decrement Counter and Branch if ≠ 0	1		I	1	
	(ontr = A, B, D, X, Y, or SP)					
		—	L	.	-	-

DBNE

Decrement and Branch if Not Equal to Zero

DBNE

Operation

 $(counter) - 1 \Rightarrow counter$

If (counter) not = 0, then (PC) + $$0003 + rel \Rightarrow PC$

Subtracts one from the counter register A, B, D, X, Y, or SP. Branches to a relative destination if the counter register does not reach zero. Rel is a 9-bit two's complement offset for branching forward or backward in memory. Branching range is \$100 to \$0FF (-256 to +255) from the address following the last byte of object code in the instruction.

CCR Effects

S X H I N Z V C

Code and CPU Cycles

Source Form	Address Mode	Machine Code (Hex)	CPU Cycles	
DBNE abdxysp, rei9	REL (9-bit)		PPP (branch) PPO (no branch)	

Loop Primitive Postbyte (1ь) Coding							
Source Form	Postbyte ¹	Object Code	Counter Register	Offset			
DBNE A, rei9	0010 X000	04 20 rr	A	Positive			
DBNE B, rei9	0010 X001	04 21 rr	B				
DBNE D, rei9	0010 X100	04 24 rr	D				
DBNE X, rei9	0010 X101	04 25 rr	X				
DBNE Y, rei9	0010 X101	04 26 rr	Y				
DBNE SP, rei9	0010 X110	04 27 rr	SP				
DBNE A, rei9	0011 X000	04 30 rr	A	Negative			
DBNE B, rei9	0011 X001	04 31 rr	B				
DBNE D, rei9	0011 X100	04 34 rr	D				
DBNE X, rei9	0011 X101	04 35 rr	X				
DBNE Y, rei9	0011 X110	04 36 rr	Y				
DBNE SP, rei9	0011 X111	04 37 rr	SP				

NOTES:

Bits 7:6:5 select DBEQ or DBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select
the counter register.

EE 308

MC9S12 Cycles

- MC9S12 works on 48 MHz clock
- A processor cycle takes 2 clock cycles P clock is 24 MHz
- Each processor cycle takes **41.7 ns** (1/24 μs) to execute
- An instruction takes from **1** to **12** processor cycles to execute
- You can determine how many cycles an instruction takes by looking up the CPU cycles for that instruction in the Reference Manual.
 - For example, **LDAB** using the **IMM** addressing mode shows one CPU cycle (of type P).
 - **LDAB** using the **EXT** addressing mode shows three CPU cycles (of type **rPO**).
 - Section 6.6 of the S12CPUV2 Reference Manual explains what the HCS12 is doing during each of the different types of CPU cycles.

2000	org \$2000	; Inst	Mode	Cycles
2000 C6 0A	ldab #10	; LDAB	(IMM)	1
2002 87	loop:clra	; CLRA	(INH)	1
2003 04 31 FC	dbne b,loo	op; DBN	E (REL) 3
2006 3F	swi	; SWI		9

The program executes the **ldab** #10 instruction once. It then goes through the loop 10 times (which has two instructions, one with one cycle and one with three cycles), and finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:

$$1 + 10 \times (1 + 3) + 9 = 50$$

$$50 \text{ cycles} = 50 \times 41.7 \text{ ns/cycle} = 2.08 \text{ μs}$$

LDAB

Load B

LDAB

OF

 $\mathsf{imm} \Rightarrow \mathsf{B}$

Loads B with either the value in M or an immediate value.

CCR

Effects

5	Х	н		N	_	V	C
-	-	-	-	Δ	Δ	0	-

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is \$00; cleared otherwise

V: Cleared

Code and CPU Cycles

Source Form	Address Mode	Machine Code (Hex)	CPU Cycles
LDAB #opr8i LDAB opr16a LDAB opr16a LDAB oprx0_xysppc LDAB oprx16,xysppc LDAB oprx16,xysppc LDAB [D,xysppc] LDAB [oprx16,xysppc]	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C6 ii D6 dd F6 hh l1 E6 xb E6 xb ff E6 xb ee ff E6 xb E6 xb ef	P rPf rPO rPf rPO frPP fIfrPf fIPrPf

EE 308

Assembler Directives

- In order to write an assembly language program it is necessary to use assembler directives.
- T hese are not instructions which the HC12 executes but are directives to the assembler program about such things as where to put code and data into memory.
- CodeWarrior has a large number of assembler directives, which can be found in the CodeWarrior help section.
- We will use only a few of these directives. (Note: In the following table, [] means an optional argument.) Here are the ones we will need:

Directive	Description		Example
Name	Cincolor to a small al	1	100
equ	Give a value to a symbol	len:	equ 100
org	Set starting value of location		org \$1000
	counter where code or data		
	will go		
dc.b	Allocate and initialize storage	var:	dc.b 2,18
	for 8-bit variables.	name	: dc.b "Jane"
	Place the bytes in successive		
	memory locations		
dc.w	Allocate and initialize storage	var:	dc.w \$ABCD
	for 16-bit variables.		
	Place the bytes in successive		
	memory locations		
ds.b	Allocate specified number of	Table	: ds.b 10
	8-bit storage places		
	3 1		
ds.w	Allocate specified number of	table:	ds.w 50
	16-bit storage spaces		
	_ constant go apares		
dcb.b	Fill memory with a given	init d	lata: dcb.b 100,0
	value:		
	The first value is the number		
	of bytes to fill.		
	The second number is the		
	value to put into memory		

Using labels in assembly programs

A **label** is defined by a name followed by a colon as the first thing on a line. When the label is referred to in the program, it has the numerical value of the location counter when the label was defined.

Here is a code fragment using labels and the assembler directives dc and ds:

org \$2000

table1: dc.b \$23,\$17,\$f2,\$a3,\$56

table2: ds.b 5

var: dc.w \$43af

The CodeWarrior assembler produces a listing file (**.lst**). Here is the listing file from the assembler:

Freescale HC12-Assembler (c) Copyright Freescale 1987-2009

Abs.	Rel.	Loc	Obj. code	Source line		
1	1				org	\$2000
2	2 a00	02000	2317 F2A3	table1:	dc.b	\$23,\$17,\$f2,\$a3,\$56
	00	02004	56			
3	3 a00	02005		table2:	ds.b	5
4	4 a00	0200A	43AF	var:	dc.w	\$43af
5	5					

Note that **table1** is a name with the value of \$2000, the value of the location counter defined in the **org** directive. Five bytes of data

Note that **table2** is a name with the value of \$2005. Five bytes of data are set aside for table2 by the **ds.b** 5 directive. The as12 assembler initialized these five bytes of data to all zeros. **var** is a name with the value of \$200a, the first location after table2.

HC12 Instructions

- 1. Data Transfer and Manipulation Instructions instructions which move and manipulate data (S12CPUV2 Reference Manual, Sections 5.3, 5.4, and 5.5).
- Load and Store load copy of memory contents into a register; store copy of register contents into memory.

LDAA \$2000 ; Copy contents of addr \$2000 into A STD 0,X ; Copy contents of D to addrs X and X+1

• Transfer — copy contents of one register to another.

TBA ; Copy B to A TFR X,Y ; Copy X to Y

• Exhange — exchange contents of two registers.

XGDX ; Exchange contents of D and XEXG A,B ; Exchange contents of A and B

• Move — copy contents of one memory location to another.

MOVB \$2000,\$20A0; Copy byte at \$2000 to \$20A0

MOVW 2,X+,2,Y+ ; Copy two bytes from address held

; in X to address held in Y

; Add 2 to X and Y

2. Arithmetic Instructions — addition, subtraction, multiplication, division (**S12CPUV2 Reference Manual**, Sections 5.6, 5.8 and 5.12).

ABA ; Add B to A; results in A

SUBD \$20A1 ; Subtract contents of \$20A1 from D

INX ; Increment X by 1

MUL ; Multiply A by B; results in D

- 3. Logic and Bit Instructions perform logical operations (**S12CPUV2 Reference Manual**, Sections 5.9, 5.10, 5.11, 5.13 and 5.14).
 - Logic Instructions

ANDA \$2000 ; Logical AND of A with contents of

; \$2000

EORB 2,X ; Exclusive OR B with contents of

; address (X+2)

• Clear, Complement and Negate Instructions

NEG -2,X; Negate (2's comp) contents of

; address (X-2)

CLRA ; Clear ACC A

• Bit manipulate and test instructions — work with bits of a register or memory.

BITA #\$08 ; Check to see if Bit 3 of A is set BSET \$0002,#\$18 ; Set bits 3 and 4 of address \$0002

• Shift and rotate instructions

LSLA ; Logical shift left A

ASR \$1000 ; Arithmetic shift right value at address

; \$1000

4. Compare and test instructions — test contents of a register or memory (to see if zero, negative, etc.), or compare contents of a register to memory (to see if bigger than, etc.) (**S12CPUV2 Reference Manual**, Section 5.9).

TSTA ; (A)-0 -- set flags accordingly

CPX #\$8000 ; (X) - \$8000 -- set flags accordingly

5. Jump and Branch Instructions — Change flow of program (e.g., goto, if-then-else, switch-case) (**S12CPUV2 Reference Manual**, Sections 5.19, 5.20 and 5.21).

JMP L1 ; Start executing code at address label

; L1

BEQ L2 ; If Z bit set, go to label L2

DBNE X,L3 ; Decrement X; if X not 0 then goto L3 BRCLR \$1A,#\$80,L4 ; If bit 7 of addr \$1A clear, go to

; label L4

JSR sub1 ; Jump to subroutine sub1 RTS ; Return from subroutine

- 6. Interrupt Instructions Initiate or terminate an interrupt call (**S12CPUV2 Reference Manual**, Section 5.22).
 - Interrupt instructions

SWI; Initiate software interrupt RTI; Return from interrupt

7. Index Manipulation Instructions — Put address into X, Y or SP, manipulate X, Y or SP (**S12CPUV2 Reference Manual**, Section 5.23).

ABX ; Add (B) to (X)

LEAX 5,Y ; Put address (Y) + 5 into X

8. Condition Code Instructions — change bits in Condition Code Register (**S12CPUV2 Reference Manual**, Section 5.26).

ANDCC #\$f0 ; Clear N, Z, C and V bits of CCR

SEV ; Set V bit of CCR

9. Stacking Instructions — push data onto and pull data off of stack (**S12CPUV2 Reference Manual**, Section 5.24).

PSHA ; Push contents of A onto stack

PULX ; Pull two top bytes of stack, put into X

10. Stop and Wait Instructions — put MC9S12 into low power mode (S12CPUV2 Reference Manual, Section 5.27).

STOP ; Put into lowest power mode

WAI ; Put into low power mode until next interrupt

11. Null Instructions

NOP ; No operation BRN ; Branch never

EE 308

12. Instructions we won't discuss or use — BCD arithmetic, fuzzy logic, minimum and maximum, multiply-accumulate, table interpolation (S12CPUV2 Reference Manual, Sections 5.7, 5.16, 5.17, and 5.18).

Disassembly of an HC12 Program

• It is sometimes useful to be able to convert *HC12 op codes* into mnemonics.

For example, consider the hex code:

ADDR DATA		
1000 C6 05 CE	 	

- To determine the instructions, use Table A-2 of the HCS12 Core Users Guide.
 - If the first byte of the instruction is anything other than \$18, use Sheet 1 of Table A.2. From this table, determine the number of bytes of the instruction and the addressing mode. For example, **\$C6** is a two-byte instruction, the mnemonic is **LDAB**, and it uses the **IMM** addressing mode. Thus, the two bytes **C6 05** is the op code for the instruction **LDAB #\$05**.
 - If the first byte is \$18, use Sheet 2 of Table A.2, and do the same thing. For example, 18 06 is a two byte instruction, the mnemonic is **ABA**, and it uses the **INH** addressing mode, so

there is no operand. Thus, the two bytes **18 06** is the op code for the instruction **ABA**.

- Indexed addressing mode is fairly complicated to disassemble. You need to use Table A.3 to determine the operand. For example, the op code \$E6 indicates LDAB indexed, and may use two to four bytes (one to three bytes in addition to the op code). The postbyte 01 indicates that the operand is 0,1, which is 5-bit constant offset, which takes only one additional byte. All 5-bit constant offset, pre and post increment and decrement, and register offset instructions use one additional byte. All 9-bit constant offset instructions use two additional bytes, with the second byte holding 8 bits of the 9 bit offset. (The 9th bit is a direction bit, which is held in the first postbyte.) All 16-bit constant offset instructions use three postbytes, with the 2nd and 3rd holding the 16-bit unsigned offset.
- Transfer (**TFR**) and exchange (**EXG**) instructions all have the op code **\$B7**. Use Table A.5 to determine whether it is **TFR** or an **EXG**, and to determine which registers are being used. If the most significant bit of the postbyte is **0**, the instruction is a transfer instruction.
- Loop instructions (Decrement and Branch, Increment and Branch, and Test and Branch) all have the op code **\$04**. To determine which instruction the op code **\$04** implies, and whether the branch is <u>positive</u> (forward) or <u>negative</u> (backward), use Table A.6. For example, in the sequence **04 35 EE**, the 04 indicates a loop instruction. The 35 indicates it is a **DBNE X** instruction (decrement register X and branch if

result is not equal to zero), and the direction is backward (negative). The **EE** indicates a branch of -18 bytes.

_

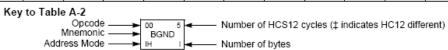
• Use up all the bytes for one instruction, then go on to the next instruction.

C6 05 \Rightarrow LDAB #\$05 two-byte LDAB, IMM addressing mode

CE 20 00 \Rightarrow LDX #\$2000 three-byte LDX, IMM addressing mode

E6 01 \Rightarrow LDAB 1,X two to four-byte LDAB,

IDX addressing mode. Operand 01 => 1,X, a 5b constant offset which uses only one postbyte


18 06 \Rightarrow ABA two-byte ABA, INH addressing mode

04 35 EE ⇒ **DBNE X,(-18)** three-byte loop instruction Postbyte 35 indicates DBNE X, negative **3F** ⇒ **SWI** one-byte SWI, INH addressing

mode

Table A-2. CPU12 Opcode Map (Sheet 1 of 2)

00 †5 BGND	ANDCC	BRA 3	PULX	40 1 NEGA	50 1 NEGB	60 3-6 NEG	70 4 NEG	SUBA 1	90 3 SUBA	A0 3-6 SUBA	B0 3 SUBA	C0 1 SUBB	D0 3 SUBB	E0 3-6 SUBB	F0 3 SUBB
IH 1	IM 2	RL 2	IH 1	IH 1		ID 2-4	EX 3			ID 2-4			DI 2		
01 5		21 1	31 3	41 1	51 1	61 3-6	71 4		91 3		B1 3		D1 3	E1 3-6	F1 3
MEM	EDIV	BRN	PULY	COMA	COMB	COM	COM	CMPA	CMPA	CMPA	CMPA	CMPB	CMPB	CMPB	CMPB
IH 1	IH 1	RL 2	IH 1				EX 3						DI 2		EX 3
02 1	12 ‡1			42 1		62 3-6			92 3				D2 3		F2 3
INY 1	MUL IH 1	RL 2	PULA IH 1	INCA IH 1	INCB	INC ID 2-4	INC EX 3	SBCA IM 2	SBCA DI 2	SBCA ID 2-4	SBCA EX 3	SBCB IM 2	SBCB DI 2	SBCB ID 2-4	SBCB EX 3
02 1	13 3	23 3/1			53 1	63 3-6					B3 3	C3 2	D3 3	E3 3-6	F3 3
DEY '	EMUL	BLS	PULB	DECA	DECB	DEC	DEC	SUBD	SUBD	SUBD	SUBD	ADDD 2	ADDD	ADDD	ADDD
IH 1	IH 1	RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3
04 , 3	14 1	24 3/1				64 3-6				A4 3-6		C4 1	D4 3	E4 3-6	F4 3
loop	ORCC	BCC	PSHX	LSRA	LSRB	LSR	LSR	ANDA	ANDA	ANDA	ANDA	ANDB	ANDB	ANDB	ANDB
RL 3		RL 2	IH 1				EX 3					IM 2	DI 2		EX 3
JMP	15 4-7 JSR	25 3/1 BCS	35 2 PSHY	45 1 ROLA	55 1 ROLB	65 3-6 ROL	75 4 ROL	85 1 BITA	95 3 BITA	A5 3-6 BITA	B5 3 BITA	C5 1 BITB	D5 3 BITB	E5 3-6 BITB	F5 3 BITB
ID 2-4		RL 2				ID 2-4				ID 2-4		IM 2		ID 2-4	
	16 4					66 3-6	78 4			A6 3-6		C6 1			F6 3
JMP	JSR	BNE	PSHA	RORA	RORB	ROR	ROR	LDAA	LDAA	LDAA	LDAA	LDAB	LDAB	LDAB	LDAB
EX 3		RL 2			IH 1	ID 2-4	EX 3	IM 2		ID 2-4		IM 2	DI 2	ID 2-4	EX 3
		27 3/1				67 3-6	77 4	1		A7 1	B7 1	C7 1	D7 1	E7 3-6	F73
BSR	JSR	BEQ	PSHB	ASRA	ASRB	ASR	ASR	CLRA	TSTA	NOP	TFR/EXG	CLRB	TSTB	TST	TST
RL 2	DI 2	RL 2 28 3/1				ID 2-4 68 3-6	EX 3		IH 1 98 3		IH 2 B8 3	IH 1	IH 1		
INX 1	18 - Page 2	BVC 3/1	38 3 PULC	ASLA	ASLB	08 3-0 ASL	ASL 4	88 1 EORA	EORA	A8 3-6 EORA	EORA	C8 1 EORB	D8 3 EORB	E8 3-6 EORB	F8 3 EORB
IH 1	- age 2	RL 2					EX 3							ID 2-4	EX 3
09 1	19 2	29 3/1				69 ‡2-4		89 1		A9 3-6		C9 1	D9 3	E9 3-6	F9 3
DEX	LEAY	B∀S	PSHC	LSRD	ASLD	CLR	CLR	ADCA	ADCA	ADCA	ADCA	ADCB	ADCB	ADCB	ADCB
IH 1							EX 3							ID 2-4	
0A ±7	1A 2 LEAX	2A 3/1 BPL	3A 3 PULD		5A 2 STAA	6A ‡2-4 STAA	7A 3 STAA	ORAA 1	9A 3 ORAA	AA 3-6 ORAA	BA 3 ORAA	CA 1 ORAB	DA 3		FA 3 ORAB
KIC 1		RL 2		CALL EX 4			EX 3				EX 3		ORAB DI 2	ORAB	EX 3
0B +8		2B 3/1				ID 2-4 6B ‡2-4				AB 3-6			DB 3	EB 3-6	FB 3
RTI	LEAS	BMI	PSHD	CALL	STAB	STAB	STAB	ADDA	ADDA	ADDA	ADDA	ADDB	ADDB	ADDB	ADDB
IH 1	ID 2-4	RL 2		ID 2-5	DI 2	ID 2-4		IM 2			EX 3	IM 2	DI 2	ID 2-4	EX 3
OC 4-6	1C 4	2C 3/1	+			6C ‡2-4	7C 3						DC 3		FC 3
BSET	BSET	BGE	wavr	BSET	STD	STD	STD	CPD	CPD	CPD	CPD	LDD	LDD	LDD	LDD
ID 3-5	EX 4	RL 2				ID 2-4	EX 3							ID 2-4	
0D 4-8 BCLR	1D 4 BCLR	2D 3/1 BLT	3D 5 RTS	4D 4 BCLR	5D 2 STY	6D ‡2-4 STY	STY 3	8D 2 CPY	9D 3 CPY	AD 3-6 CPY	BD 3 CPY	CD 2 LDY	DD 3	ED 3-6 LDY	FD 3 LDY
ID 3-5	EX 4	RL 2		DI 3				IM 3	ı					ID 2-4	
0E ±4-6	1E 5		3E ‡†7			6E ±2-4		8E 2		AE 3-6					
BRSET	BRSET	BGT	WAI	BRSET	STX	STX	STX	CPX	CPX	CPX	CPX	LDX	LDX	LDX	LDX
ID 4-6	EX 5		IH 1	DI 4						ID 2-4				ID 2-4	
OF ‡4-6		2F 3/1				6F ‡2-4									FF 3
BRCLR	BRCLR	BLE	SWI	BRCLR	STS	STS	STS	CPS	CPS	CPS	CPS	LDS	LDS	LDS	LDS
IID 4-61	EX 5	RL 2	IH 1	DI 4	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3

Table A-2. CPU12 Opcode Map (Sheet 2 of 2)

100 (40 40			40 40			70 40	22 42		10 10	DD 40	00 40	50 40	== 40	50 40
MOVW 4	10 12 IDIV	LBRA	30 10 TRAP	40 10 TRAP	50 10 TRAP	60 10 TRAP	70 10 TRAP	80 10 TRAP	90 10 TRAP	A0 10	B0 10	C0 10	D0 10	TRAP	TRAP
IM-ID 5	IH 2	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
01 5 MOVW	11 12 FDIV	21 3 LBRN	31 10 TRAP	41 10 TRAP	51 10 TRAP	61 10 TRAP	71 10 TRAP	81 10 TRAP	91 10 TRAP	A1 10 TRAP	B1 10 TRAP	C1 10 TRAP	D1 10 TRAP	E1 10 TRAP	F1 10 TRAP
EX-ID 5	IH 2		IH 2	IH 2	III 2	III 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
02 5	12 13		32 10			62 10	72 10			A2 10		C2 10	D2 10		F2 10
ID-ID 4	EMACS SP 4	LBHI RL 4	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
ID-ID 4	13 3	23 4/3	IH 2	IH 2	IH 2 53 10	IH 2 63 10	IH 2 73 10		IH 2 93 10	IH 2 A3 10	IH 2 B3 10			IH 2 E3 10	IH 2 F3 10
MOVW	EMULS	LBLS	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IM-EX 6	IH 2		IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
04 6 MOVW	14 12 EDIVS	24 4/3 LBCC	34 10 TRAP	44 10 TRAP	54 10 TRAP	64 10 TRAP	74 10 TRAP	84 10 TRAP	94 10 TRAP	A4 10 TRAP	B4 10 TRAP	C4 10 TRAP	D4 10 TRAP	E4 10 TRAP	F4 10 TRAP
EX-EX 6		RL 4	IH 2		IH 2	IH 2				IH 2	IH 2		IH 2	IH 2	IH 2
05 5	15 12	25 4/3			55 10	65 10	75 10	85 10		A5 10			D5 10		F5 10
MOVW	IDIVS	LBCS	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
ID-EX 5	IH 2		IH 2		IH 2	IH 2	IH 2	IH 2		IH 2					
06 2 ABA	16 2 SBA	26 4/3 LBNE	36 10 TRAP	46 10 TRAP	56 10 TRAP	66 10 TRAP	76 10 TRAP	86 10 TRAP	96 10 TRAP	A6 10 TRAP	B6 10 TRAP	C6 10 TRAP	D6 10 TRAP	E6 10 TRAP	F6 10 TRAP
IH 2	IH 2	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2		IH 2					
07 3	17 2	27 4/3		47 10					97 10				D7 10		F7 10
DAA	CBA	LBEQ	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
	IH 2		IH 2	IH 2	IH 2	IH 2	IH 2	IH 2		IH 2	IH 2		IH 2	IH 2	IH 2
08 4 MOVB	18 4-7 MAXA	28 4/3 LBVC	38 10 TRAP	48 10 TRAP	58 10 TRAP	68 10 TRAP	78 10 TRAP	88 10 TRAP	98 10 TRAP	A8 10 TRAP	B8 10 TRAP	C8 10 TRAP	D8 10 TRAP	E8 10 TRAP	F8 10 TRAP
IM-ID 4	ID 3-5	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
09 5	19 4-7	29 4/3		49 10		69 10			99 10				D9 10		F9 10
MOVB	MINA	LBVS	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
EX-ID 5		RL 4	IH 2		IH 2	IH 2	IH 2	IH 2		IH 2	IH 2		IH 2	IH 2	IH 2
0A 5 MOVB	1A 4-7 EMAXD	2A 4/3 LBPL	3A †3n REV	4A 10 TRAP	5A 10 TRAP	TRAP	7A 10 TRAP	8A 10 TRAP	9A 10 TRAP	AA 10 TRAP	BA 10 TRAP	CA 10 TRAP	DA 10 TRAP	EA 10 TRAP	FA 10 TRAP
ID-ID 4	ID 3-5	RL 4	SP 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
0B 4 MOVB	1B 4-7 EMIND	2B 4/3 LBMI	3B †5n/3n REVW	4B 10 TRAP	5B 10 TRAP	6B 10 TRAP	7B 10 TRAP	8B 10 TRAP	9B 10 TRAP	AB 10 TRAP	BB 10 TRAP	CB 10 TRAP	DB 10 TRAP	EB 10 TRAP	FB 10 TRAP
IM-EX 5		RL 4				IH 2					IH 2			IH 2	IH 2
	10 4-7		3C ±†7B		5C 10				9C 10						FC 10
MOVB	MAXM	LBGE	WÁV	TRAP											
DD 5	ID 3-5 1D D4-7	RL 4	SP 2		IH 2	6D 10	IH 2	IH 2	9D 10	IH 2	IH 2 BD 10	IH 2	IH 2	IH 2 ED 10	IH 2 FD 10
MOVB	MINM	2D 4/3 LBLT	TBL	4D 10 TRAP	5D 10 TRAP	TRAP	7D 10 TRAP	8D 10 TRAP	TRAP	AD 10 TRAP	TRAP	CD 10 TRAP	DD 10 TRAP	ED 10 TRAP	FD 10 TRAP
ID-EX 5	ID 3-5	RL 4	ID 3	IH 2											
0E 2 TAB	1E 4-7 EMAXM	2E 4/3 LBGT	3E ‡8 STOP	4E 10 TRAP	5E 10 TRAP	6E 10 TRAP	7E 10 TRAP	8E 10 TRAP	9E 10 TRAP	AE 10 TRAP	BE 10 TRAP	CE 10 TRAP	DE 10 TRAP	EE 10 TRAP	FE 10 TRAP
IH 2	ID 3-5	RL 4	IH 2		IH 2										
0F 2	1F 4-7	2F 4/3		4F 10	5F 10	6F 10	7F 10	8F 10	9F 10	AF 10	BF 10	CF 10	DF 10	EF 10	FF 10
TBA	EMINM	LBLE	ETBL	TRAP											
# The area	ID 3-5	RL 4	ID 3	IH 2	IH 2	IH 2	in 2	IH 2							

^{*} The opcode \$04 (on sheet 1 of 2) corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE.

[†] Refer to instruction summary for more information.

[‡] Refer to instruction summary for different HC12 cycle count.

Page 2: When the CPU encounters a page 2 opcode (\$18 on page 1 of the opcode map), it treats the next byte of object code as a page 2 instruction opcode.

Table A-3. Indexed Addressing Mode Postbyte Encoding (xb)

00	10	20	30	40	50	60	70	80	90	A0	B0	CO	D0	E0	F0
0,X	-16,X	1,+X	1,X+	0,Y	-16,Y	1,+Y	1,Y+	0,SP	-16,SP	1,+SP	1,SP+	0,PC	-16,PC	n,X	n,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	9b const	9b const
01	11	21	31	41	51	61	71	81	91	A1	B1	C1	D1	E1	F1 - 0D
1,X 5b const	-15,X 5b const	2,+X pre-inc	2,X+ post-inc	1,Y 5b const	-15,Y 5b const	2,+Y pre-inc	2,Y+ post-inc	1,SP 5b const	-15,SP 5b const	2,+SP pre-inc	2,SP+ post-inc	1,PC 5b const	-15,PC 5b const	-n,X 9b const	-n,SP 9b const
02	12	22 22	32		52			82			B2	C2	D2		F2
2.X	-14.X	3.+X	3.X+	42 2.Y	-14.Y	62 3.+Y	72 3.Y+	2,SP	92 -14,SP	A2 3.+SP	3.SP+	2.PC	-14.PC	E2 n.X	n.SP
5b const	5b const	o,+∧ pre-inc	post-inc	5b const	5b const	ore-inc	post-inc	5b const	5b const	ore-inc	post-inc	5b const	5b const	16b const	16b const
03	13	23	33	43	53	63	73	83	93	A3	B3	C3	D3	E3	F3
3.X	-13.X	4.+X	4.X+	3.Y	-13.Y	4.+Y	4.Y+	3.SP	-13.SP	4.+SP	4.SP+	3.PC	-13.PC	[n,X]	[n,SP]
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	16b indr	16b indr
04	14	24	34	44	54	64	74	84	94	A4	B4	C4	D4	E4	F4
4.X	-12.X	5.+X	5.X+	4.Y	-12.Y	5.+Y	5.Y+	4,SP	-12,SP	5.+SP	5.SP+	4.PC	-12.PC	A.X	A,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	A offset	A offset
05	15	25	35	45	55	65	75	85	95	A5	B5	C5	D5	E5	F5
5,X	-11,X	6,+X	6,X+	5,Y	-11,Y	6,+Y	6,Y+	5,SP	-11,SP	6,+SP	6,SP+	5,PC	-11,PC	B,X	B,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	B offset	B offset
06	16	26	36	46	56	66	76	86	96	A6	B6	C6	D6	E6	F6
6,X	-10,X	7,+X	7,X+	6,Y	-10,Y	7.+Y	7,Y+	6,SP	-10,SP	7,+SP	7,SP+	6,PC	-10,PC	D,X	D,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D offset	D offset
07	17	27	37	47	57	67	77	87	97	A7	B7	C7	D7	E7	F7
7,X	-9,X	8,+X	8,X+	7,Y	-9,Y	8,+Y	8,Y+	7,SP	-9,SP	8,+SP	8,SP+	7,PC	-9,PC	[D,X]	[D,SP]
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D indirect	D indirect
08 8.X	18 -8.X	28 8.–X	38 8.X-	48 8.Y	58 -8.Y	68 8.–Y	78 8.Y-	88	98	A8	B8	C8	D8	E8	F8
5b const	-o,∧ 5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	8,SP 5b const	–8,SP 5b const	8,-SP pre-dec	8,SP- post-dec	8,PC 5b const	-8,PC 5b const	n,Y 9b const	n,PC 9b const
09	19	29	39	49	59	69	79	89	99	A9	B9	C9	D9	E9	F9
9.X	-7.X	7,-X	7.X-	9.Y	-7.Y	7Y	7.Y-	9.SP	-7.SP	7,-SP	7.SP-	9.PC	-7.PC	-n.Y	-n.PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
OA.	1A	2A	3A	4A	5A	6A	7A	8A	9A	AA	BA	CA	DA	EA	FA
10.X	-6.X	6X	6.X-	10.Y	-6.Y	6Y	6.Y-	10.SP	-6.SP	6SP	6,SP-	10.PC	-6.PC	n.Y	n.PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b const	16b const
0B	1B	2B	3B	4B	5B	6B	7B	8B	9B	AB	BB	CB	DB	EB	FB
11,X	-5,X	5,-X	5,X-	11,Y	-5,Y	5,-Y	5,Y-	11,SP	-5,SP	5,-SP	5,SP-	11,PC	-5,PC	[n,Y]	[n,PC]
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b indr	16b indr
0C	1C	2C	3C	4C	5C	6C	7C	8C	9C	AC	BC	CC	DC	EC	FC
12,X	-4,X	4,-X	4,X-	12,Y	-4,Y	4,-Y	4,Y-	12,SP	-4,SP	4,-SP	4,SP-	12,PC	-4,PC	A,Y	A,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	A offset	A offset
0D	1D	2D	3D	4D	5D	6D	7D	8D	9D	AD	BD	CD	DD	ED	FD
13,X	-3,X	3,-X	3,X-	13,Y	-3,Y	3,-Y	3,Y-	13,SP	-3,SP	3,-SP	3,SP-	13,PC	-3,PC	B,Y	B,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	B offset	B offset
0E	1E	2E	3E	4E	5E	6E	7E	8E	9E	AE CD	BE	CE 14 BC	DE	EE	FE
14,X 5b const	-2,X 5b const	2,-X	2,X-	14,Y 5b const	-2,Y 5b const	2,-Y	2,Y-	14,SP 5b const	-2,SP 5b const	2,-SP	2,SP-	14,PC	-2,PC 5b const	D,Y D offset	D,PC D offset
OF	1F	pre-dec 2F	post-dec 3F	4F	5F	pre-dec 6F	post-dec 7F	8F	9F	pre-dec AF	post-dec BF	5b const	DF	EF .	FF
0F 15.X	-1.X	1X	3F 1.X-	4F 15.Y	5F -1.Y	1Y	1.Y-	15.SP	9F -1.SP	1SP	1.SP-	15.PC	-1.PC	1	ID.PC1
5b const	5b const	pre-dec	nost-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	[D,Y] D indirect	D indirect
CO CONSC	OD CONST	p.e-ueu	positived	CO CONST	CO CONST	p.e-ueu	positives	CO CONST	CO CONST	pre-ueu	post-dec	OB CONST	CO CONST	5 manest	5 manect

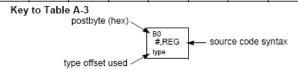


Table A-5. Transfer and Exchange Postbyte Encoding

			TRAN	SFERS				
ULS MS⇒	0	1	2	3	4	5	6	7
0	A⇒A	B⇒A	CCR⇒A	TMP3 _L ⇒ A	B⇒A	$X_L \Rightarrow A$	Y _L ⇒ A	SP _L ⇒ A
1	A⇒B	B⇒B	CCR⇒B	TMP3 _L ⇒ B	B⇒B	X _L ⇒B	Y _L ⇒B	SP _L ⇒B
2	A⇒CCR	B⇒CCR	CCR ⇒ CCR	TMP3 _L ⇒ CCR	B⇒CCR	X _L ⇒CCR	Y _L ⇒CCR	SP _L ⇒ CCR
3	sex:A ⇒ TMP2	sex:B ⇒ TMP2	sex:CCR ⇒ TMP2	TMP3 ⇒ TMP2	D⇒TMP2	X⇒TMP2	Y⇒TMP2	SP⇒TMP2
4	sex:A ⇒ D SEX A,D	sex:B ⇒ D SEX B,D	sex:CCR ⇒ D SEX CCR,D	TMP3 ⇒ D	D⇒D	X⇒D	Y⇒D	SP⇒D
5	sex:A ⇒ X SEX A,X	sex:B ⇒ X SEX B,X	sex:CCR ⇒ X SEX CCR,X	TMP3⇒X	D⇒X	X⇒X	Y⇒X	SP⇒X
6	sex:A⇒Y SEX A,Y	sex:B ⇒ Y SEX B,Y	sex:CCR ⇒ Y SEX CCR,Y	TMP3⇒Y	D⇒Y	X⇒Y	$Y \Rightarrow Y$	SP⇒Y
7	sex:A ⇒ SP SEX A,SP	sex:B⇒SP SEX B,SP	sex:CCR ⇒ SP SEX CCR,SP	TMP3 ⇒ SP	D⇒SP	X⇒SP	Y⇒SP	SP⇒SP
			EXCH	ANGES				
↓LS MS⇒	8	9	Α	В	С	D	E	F
0	$A \Leftrightarrow A$	B ⇔ A	CCR ⇔ A	$TMP3_L \Rightarrow A$ \$00:A $\Rightarrow TMP3$	B ⇒ A A ⇒ B	$X_L \Rightarrow A$ \$00:A $\Rightarrow X$	$Y_L \Rightarrow A$ \$00:A $\Rightarrow Y$	$SP_L \Rightarrow A$ \$00:A \Rightarrow SP
1	A ⇔ B	B⇔B	CCR ⇔ B	TMP3 _L ⇒ B \$FF:B ⇒ TMP3	B⇒B \$FF⇒A	$X_L \Rightarrow B$ \$FF:B $\Rightarrow X$	$Y_L \Rightarrow B$ \$FF:B \Rightarrow Y	$SP_L \Rightarrow B$ $FF:B \Rightarrow SP$
2	A ⇔ CCR	B ⇔ CCR	CCR ⇔ CCR	TMP3 _L ⇒ CCR \$FF:CCR ⇒ TMP3	B ⇒ CCR \$FF:CCR ⇒ D	$X_L \Rightarrow CCR$ \$FF:CCR $\Rightarrow X$	Y _L ⇒CCR \$FF:CCR⇒Y	$SP_L \Rightarrow CCR$ \$FF:CCR \Rightarrow SP
3	$$00:A \Rightarrow TMP2$ $TMP2_L \Rightarrow A$	$$00:B \Rightarrow TMP2$ $TMP2_L \Rightarrow B$	$$00:CCR \Rightarrow TMP2$ $TMP2_L \Rightarrow CCR$	TMP3 ⇔ TMP2	D ⇔ TMP2	X ⇔ TMP2	Y⇔TMP2	SP ⇔ TMP2
4	\$00:A ⇒ D	\$00:B ⇒ D	\$00:CCR⇒D B⇒CCR	TMP3 ⇔ D	D⇔D	X⇔D	Y⇔D	SP ⇔ D
5	\$00:A ⇒ X X _L ⇒ A	\$00:B ⇒ X X _L ⇒ B	\$00:CCR \Rightarrow X X _L \Rightarrow CCR	TMP3 ⇔ X	D⇔X	X⇔X	Y⇔X	SP ⇔ X
6	\$00:A ⇒ Y Y _L ⇒ A	\$00:B ⇒ Y Y _L ⇒ B	\$00:CCR ⇒ Y Y _L ⇒ CCR	TMP3 ⇔ Y	D⇔Y	X⇔Y	Y⇔Y	SP ⇔ Y
7	\$00:A ⇒ SP SP _L ⇒ A	$$00:B \Rightarrow SP$ $SP_L \Rightarrow B$	\$00:CCR ⇒ SP SP _L ⇒ CCR	TMP3 ⇔ SP	D ⇔ SP	X ⇔ SP	Y⇔SP	SP ⇔ SP

TMP2 and TMP3 registers are for factory use only.

Lecture 5

EE 308 Spring 2016

Table A-6. Loop Primitive Postbyte Encoding (lb)

00 A	10 A	20 A DBNE	30 A	40 A	50 A	60 A	70 A	80 A	90 A	A0 A IBNE	Bo A IBNE
DBEQ (+)	DBEQ (-)	(+)	DBNE (-)	TBEQ (+)	TBEQ (-)	TBNE (+)	TBNE (-)	IBEQ (+)	IBEQ (-)	(+)	(-)
01 B	11 B	21 B	31 B	41 B	51 B	61 B	71 B	81 B	91 B	A1 B	B1 B
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
02	12	22	32	42	52	62	72	82	92	A2 (+)	B2
U2	12 _		- az	42 _		62	/2 _	82 _	w2	A2 _	- ESC
03	13	23	33	43	53	63	73	83	93	A3	B3
_	_	_	_	_	_	_	_	_	_	_	_
04 D	14 D	24 D	34 D	44 D	54 D	64 D	74 D	84 D	94 D	A4 D	B4 D
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
05 X	15 X	25 X	35 X	45 X	55 X	65 X	75 X	85 X	95 X	As X	Bs X
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
06 Y	16 Y	26 Y	36 Y	46 Y	56 Y	66 Y	76 Y	86 Y	96 Y	As Y	Be Y
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
07 SP	17 SP			47 SP		67 SP	77 SP	87 SP	97 SP	A7 SP	B7 SP
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)

Key to Table A-6

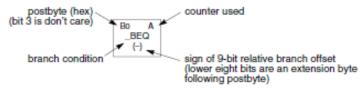


Table A-7. Branch/Complementary Branch

	Br	anch		Complementary Branch						
Test	Mnemonic	Opcode	Boolean	Test	Mnemonic	Opcode	Comment			
r>m	BGT	2E	$Z + (N \oplus V) = 0$	r≤m	BLE	2F	Signed			
r≥m	BGE	2C	$N \oplus V = 0$	r <m< td=""><td>BLT</td><td>2D</td><td>Signed</td></m<>	BLT	2D	Signed			
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Signed			
r≤m	BLE	2F	$Z + (N \oplus V) = 1$	r>m	BGT	2E	Signed			
r <m< td=""><td>BLT</td><td>2D</td><td>$N \oplus V = 1$</td><td>r≥m</td><td>BGE</td><td>2C</td><td>Signed</td></m<>	BLT	2D	$N \oplus V = 1$	r≥m	BGE	2C	Signed			
r>m	BHI	22	C + Z = 0	r≤m	BLS	23	Unsigned			
r≥m	BHS/BCC	24	C = 0	r <m< td=""><td>BLO/BCS</td><td>25</td><td>Unsigned</td></m<>	BLO/BCS	25	Unsigned			
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Unsigned			
r≤m	BLS	23	C + Z = 1	r>m	BHI	22	Unsigned			
r <m< td=""><td>BLO/BCS</td><td>25</td><td>C = 1</td><td>r≥m</td><td>BHS/BCC</td><td>24</td><td>Unsigned</td></m<>	BLO/BCS	25	C = 1	r≥m	BHS/BCC	24	Unsigned			
Carry	BCS	25	C = 1	No Carry	BCC	24	Simple			
Negative	BMI	2B	N = 1	Plus	BPL	2A	Simple			
Overflow	BVS	29	V = 1	No Overflow	BVC	28	Simple			
r=0	BEQ	27	Z = 1	r≠0	BNE	26	Simple			
Always	BRA	20	_	Never	BRN	21	Unconditional			

For 16-bit offset long branches precede opcode with a \$18 page prebyte.