
 Lecture 7 EE 308 Spring 2016

 Decimal, Hexadecimal and Binary Numbers
 Writing an assembly language program

o Disassembly of MC9S12 op codes
o Use flow charts to lay out structure of program
o Use common flow structures

 if-then
 if-then-else
 do-while
 while

o Do not use spaghetti code
o Plan structure of data in memory
o Plan overall structure of program
o Work down to more detailed program structure
o Implement structure with instructions
o Optimize program to make use of instruction

efficiencies
o Do not sacrifice clarity for efficiency

Binary, Hex and Decimal Numbers (4-bit representation)

Binary Hex Decimal

0000
0001
0010

…
1010
1011
1100
1101
1110

0
1
2
…
A
B
C
D
E

0
1
2
…
10
11
12
13
14

 Lecture 7 EE 308 Spring 2016

1111 F 15

What does a number represent?

Binary numbers are a code, and represent what the programmer
intends for the code.

0x72 Some possible meanings:
’r’ (ASCII)
INC MEM (hh ll) (HC12 instruction)
2.26V (Input from A/D converter)
11410 (Unsigned number)
+11410 (Signed number)
Set temperature in room to 69 F
Set cruise control speed to 120 mph

Binary to Unsigned Decimal:
Convert Binary to Unsigned Decimal
1111011 2

1 x 26 + 1 x 2 5 + 1 x 2 4 + 1 x 2 3 + 0 x 2 2 + 1 x 2 1 + 1 x 2 0

1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1
123 10

Hex to Unsigned Decimal
Convert Hex to Unsigned Decimal
82D6 16

8 x 163 + 2 x 162 + 13 x 161 + 6 x 160

8 x 4096 + 2 x 256 + 13 x 16 + 6 x 1
33494 10

 Lecture 7 EE 308 Spring 2016

Unsigned Decimal to Hex
Convert Unsigned Decimal to Hex

Division Q R
Decimal Hex

721/16
45/16
2/16

45
2
0

1
13
2

1
D
2

721 10 = 2D1 16

Signed Number Representation in 2’s Complement Form:

If the most significant bit (MSB) is 0 (most significant hex digit
0−7), then the number is positive.

Get decimal equivalent by converting number to decimal, and use
the + sign.

Example for 8−bit number:

3A 16 −> + (3 x 161 + 10 x 160) 10
 + (3 x 16 + 10 x 1) 10
 + 58 10

 Lecture 7 EE 308 Spring 2016

If the most significant bit is 1 (most significant hex digit 8−F),
then the number is negative.

Get decimal equivalent by taking 2’s complement of number,
converting to decimal, and using − sign.

Example for 8−bit number:

A316 −> - (5C+1) 16

 - (5 x 161 + 13 x 160) 10
 - (5 x 16 + 13 x 1) 10
 - 93 10

One’s complement table makes it simple to finding 2’s
complements

 Lecture 7 EE 308 Spring 2016

One’s complement table makes it simple to finding 2’s
complements

To take two’s complement, add one to one’s complement.

One’s complement

One’s complement

 Lecture 7 EE 308 Spring 2016

Take two’s complement of D0C3:

2F3C + 1 = 2F3D

Addition and Subtraction of Binary and Hexadecimal
Numbers

Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero)
bits

How the C, V, N and Z bits of the CCR are changed?

N bit is set if result of operation is negative (MSB = 1)

Z bit is set if result of operation is zero (All bits = 0)

V bit is set if operation produced an overflow

 Lecture 7 EE 308 Spring 2016

C bit is set if operation produced a carry (borrow on
subtraction)

Note: Not all instructions change these bits of the CCR

Addition of Hexadecimal Numbers

ADDITION:

C bit set when result does not fit in word

V bit set when P + P = N or
 N + N = P

N bit set when MSB of result is 1

Z bit set when result is 0

 7A 2A AC AC

 Lecture 7 EE 308 Spring 2016

+52 +52 +8A +72
----- ----- ------ ------
 CC 7C 36 1E

C: 0 C: 0 C: 1 C: 1

V: 1 V: 0 V: 1 V: 0

N: 1 N: 0 N: 0 N: 0

Z: 0 Z: 0 Z: 0 Z: 0

Subtraction of Hexadecimal Numbers

SUBTRACTION:

C bit set on borrow (when the magnitude of the subtrahend is
greater than the minuend

V bit set when N - P = P or
 P - N = N

N bit set when MSB is 1

Z bit set when result is 0

 Lecture 7 EE 308 Spring 2016

 7A 8A 5C 2C
 -5C -5C -8A -72
 ----- ----- ------ ------
 1E 2E D2 BA

C: 0 C: 0 C: 1 C: 1

V: 0 V: 1 V: 1 V: 0

N: 0 N: 0 N: 1 N: 1

Z: 0 Z: 0 Z: 0 Z: 0

 Lecture 7 EE 308 Spring 2016

Writing Assembly Language Programs

Use Flowcharts to Help Plan Program Structure

Flow chart symbols:

 Lecture 7 EE 308 Spring 2016

IF-THEN Flow Structure

 if (C)
 {
 A;
 }

EXAMPLE:

 if (A<10)
 {
 var = 5;
 }

 CMPA #10 ; if (A<10)
 BLT L1 ; signed numbers
 BRA L2
L1: LDAB #5 ; var=5
 STAB var
L2: next instruction

OR:

 CMPA #10 ; if(A<10)
 BGE L2 ; signed numbers
 LDAB #5 ; var=5
 STAB var
L2: next instruction

 Lecture 7 EE 308 Spring 2016

IF-THEN-ELSE Flow Structure

 if (C)
 {
 A;
 }
 else
 {
 B;
 }

 if(A < 10)
 {
 var = 5;
 }
 else
 {
 var = 0;
 }

 CMPA #10 ; if(A<10)
 BLT L1 ; signed numbers
 CLR var ; var=0
 BRA L2
L1: LDAB #5 ; var=5
 STAB var
L2: next instruction

 Lecture 7 EE 308 Spring 2016

DO WHILE Flow Structure

 do
 {
 A;
 }
 while (C);

EXAMPLE:

 i = 0;
 do
 {
 table[i]=table[i]/2;
 i=i+1;
 }
 while (i <= LEN);

 LDX #table
 CLRA ; i=0
L1: ASR 1,X+ ; table[i] /=2
 INCA ; i=i+1
 CMPA #LEN ; while(i<=10)
 BLE L1 ; unsigned
 ; numbers

 Lecture 7 EE 308 Spring 2016

WHILE Flow Structure

 while (C)
 {
 A;
 }

EXAMPLE:

 i = 0;
 while(i <= LEN)
 {
 table[i]=table[i]*2;
 i=i+1;
 }

 LDX #table
 CLRA
L1: CMPA #LEN
 BLT L2
 BRA L3
L2: ASL 1,X+
 INCA
 BRA L1
L3: next instruction

 Lecture 7 EE 308 Spring 2016

Use Good Structure When Writing Programs

— Do Not Use Spaghetti Code

 Lecture 7 EE 308 Spring 2016

Example Program: Divide a table of data by 2

Problem: Start with a table of data. The table consists of 5 values.
Each value is between 0 and 255. Create a new table whose
contents are the original table divided by 2.

1. Determine where code and data will go in memory.
Code at $2000, data at $1000.

2. Determine type of variables to use.
Because data will be between 0 and 255, can use unsigned 8-

bit numbers.

3. Draw a picture of the data structures in memory:

 Lecture 7 EE 308 Spring 2016

4. Strategy: Because we are using a table of data, we will need
pointers to each table so we can keep track of which table element
we are working on.

Use the X and Y registers as pointers to the tables.

5. Use a simple flow chart to plan structure of program.

 Lecture 7 EE 308 Spring 2016

6. Need a way to determine when we reach the end of the table.

One way: Use a counter (say, register A) to keep track of
how many Elements we have processed.

x+1

y+1

 Lecture 7 EE 308 Spring 2016

7. Add code to implement blocks:

 Lecture 7 EE 308 Spring 2016

8. Write the program:

; Program to divide a table by two
; and store the results in memory

prog: equ $2000
data: equ $1000
count: equ 5

org prog ; Set program counter to 0x2000
ldaa #count ; Use A as counter
ldx #table1 ; Use X as data pointer to table1
ldy #table2 ; Use Y as data pointer to table2

l1: ldab 0,x ; Get entry from table1
lsrb ; Divide by two (unsigned)
stab 0,y ; Save in table2
inx ; Increment table1 pointer
iny ; Increment table2 pointer
deca ; Decrement counter
bne l1 ; Counter != 0 => more entries

 ; to divide
swi ; Done

org data
table1: dc.b $07,$c2,$3a,$68,$f3
table2: ds.b count

 Lecture 7 EE 308 Spring 2016

9. Advanced: Optimize program to make use of instructions set
efficiencies:

; Program to divide a table by two
; and store the results in memory

prog: equ $1000
data: equ $2000

count: equ 5

org prog ; Set program counter to 0x1000
ldaa #count ; Use A as counter
ldx #table1 ; Use X as data pointer to table1
ldy #table2 ; Use Y as data pointer to table2

l1: ldab 1,x+ ; Get entry from table1; then inc ptr.
lsrb ; Divide by two (unsigned)
stab 1,y+ ; Save in table2; then inc ptr.
dbne a,l1 ; Decrement counter; if not 0,

; more to do
swi ; Done

org data
table1: dc.b $07,$c2,$3a,$68,$f3
table2: ds.b count

 Lecture 7 EE 308 Spring 2016

TOP-DOWN PROGRAM DESIGN

• PLAN DATA STRUCTURES IN MEMORY

• START WITH A LARGE PICTURE OF THE PROGRAM
STRUCTURE

• WORK DOWN TO MORE DETAILED STRUCTURE

• TRANSLATE STRUCTURE INTO CODE

• OPTIMIZE FOR EFFICIENCY

DO NOT SACRIFICE CLARITY FOR EFFICIENCY

