Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

« Writing Assembly Language Programs
- Use flow charts to lay out structure of program
Use common flow structures
« If-then
- If-then-else
- Do-while
- While
- Plan structure of data in memory
» Top-down design
= Plan overall structure of program
- Work down to more detailed program structure
- Implement structure with instructions
- Optimize program to make use of instruction
efficiencies
= Do not sacrifice clearly for efficiency or speed

« Input and Output Ports
- How to get data into and out of the MC9S12

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

Example Program: Divide a table of data by 2

Problem: Start with a table of data. The table consists of 5 values.
Each value is between 0 and 255. Create a new table whose
contents are the original table divided by 2.

1. Determine where code and data will go in memory.
Code at $2000, data at $1000.

2. Determine type of variables to use.
Because data will be between 0 and 255, can use unsigned 8-

bit numbers.

3. Draw a picture of the data structures in memory:

$1000 tablel: ™

| S counr

tablez:

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

4-7. Add code to implement blocks:

tablal —-— i

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

8. Write the program:

; Program to divide a table by two
; and store the results in memory

prog:
data:

count:

11:

tablel:
table2:

equ $2000
equ $1000

equ 5

org prog ; Set program counter to 0x2000

ldaa #count ; Use A as counter

Idx #tablel ; Use X as data pointer to tablel
Idy #table2 ; Use Y as data pointer to table2

ldab 0,x ; Get entry from tablel

Isrb ; Divide by two (unsigned)

stab 0,y ; Save in table2

inx ; Increment tablel pointer

iny ; Increment table2 pointer

deca ; Decrement counter

bne 11 ; Counter != 0 => more entries
; to divide

swi ; Done

org data

dc.b $07,$c2,$3a,$68,$f3
ds.b count

Electrical Engineering

New Mexico Institute of Mining and Technology

Lecture8 EE 308 Spring 2016

9. Advanced: Optimize program to make use of instructions set

efficiencies:

; Program to divide a table by two
; and store the results in memory

prog:
data:

count:

11:

tablel:
table2:

equ $1000
equ $2000

equ 5

org prog
ldaa #count
Idx #tablel
Idy #table2
Idab 1,x+

Isrb
stab 1,y+
dbne a,l1

swi

org data

; Set program counter to 0x1000
; Use A as counter

; Use X as data pointer to tablel
; Use Y as data pointer to table2
; Get entry from tablel; then inc
; pointer

; Divide by two (unsigned)

; Save in table2; then inc potr.

; Decrement counter; if not 0,

; more to do

; Done

dc.b $07,$c2,$3a,$68,$f3

ds.b count

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

TOP-DOWN PROGRAM DESIGN
« PLAN DATA STRUCTURES IN MEMORY

« START WITH A LARGE PICTURE OF THE PROGRAM
STRUCTURE

* WORK DOWN TO MORE DETAILED STRUCTURE
« TRANSLATE STRUCTURE INTO CODE

* OPTIMIZE FOR EFFICIENCY

DO NOT SACRIFICE CLARITY FOR EFFICIENCY

Electrical Engineering

New Mexico Institute of Mining and Technology

Lecture8 EE 308 Spring 2016

Input and Output Ports

* How do you get data into a computer from the outside?

SIMPLIFIED INPUT PORT

Dz

wmopE e popd oD
o
L

Dy

Dakwdtas O BOoH®E WwHLEGEW0

Dg

DAADNAANAAY

Read foon
Qea0000

Any read from address $0000 gets
signals from outside

LDAA $00

Puts data from outside into
accumulator A.

Data from outside looks like a
memory location.

T <] m™

A Tri-State Buffer acts like a switch
If TRI is not active, the switch is

open: OUT will not be driven by IN
Some other device can drive OUT

cur Vo ™

Electrical Engineering

New Mexico Institute of Mining and Technology

Lecture8 EE 308 Spring 2016

* How do you get data out of computer to the outside?

SIMPLIFIED OUTPUT PORT

D,
Dg
D
H 5
C
1
2 Dg
D
a
t D
a 3
L
1 D
= 2
2
s
D1
Do
Write to
00001

D Ql9——

TRaEundS O 04 bHDDOEW

Any write to address $01 latches
data into FF, so data goes to
external pins

MOVB #$AA,$01

Puts $A A on the external pins

When a port is configured as
output and you read from that port,
the data you read is the data which
was written to that port:

MOVB #$AA, $01
LDAA $01

Accumulator A will have $AA after

this

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

* Most I/0 ports on MC9S12 can be configured as either input or
output

SIMPLIFIED INPUT/OUTPUT PORT

T~

Read from Addresis 0x0000

D, D Q ! PA.,
] =

Write to Address 0x0000 DDRA 7

« A write to address 0x0000 writes data to the flip-flop
A read from address 0x0000 reads data on pin

« If Bit 7 of DDRA is 0, the port is an input port. Data written
to flip-flop does not get to pin though tri-state buffer

. If Bit 7 of DDRA is 1, the port is an output port. Data written
to flip-flop does get to pin though tri-state buffer

« DDRA (Data Direction Register A) is located at 0x0002

Electrical Engineering

New Mexico Institute of Mining and Technology

Lecture8 EE 308 Spring 2016

Figure 1-1 MC9512DT256 Block Diagram

VAH |-— WVAH |=—VRH
o
| 256K Byts Flash EEPROM | ATDD ypy |= ATDT v |a—vAL
VDDA (- VDDA [=—VDDA
| 12K Byts RAM | VSSA |- VSSA |-—VESA
AND —— PACD ANO [|=—PaDo8
| 4K Byte EEPROM | AN1 ~=— PAD0 AN1 [|=—PaDog
ANZ - PALDZ ANZ |=— |=—paDD
VDDR—s ANz & [=—PaDoz ANZ [=— = |=—PAD11
WESA—- AN4 oI [-—PADO4 AN4 | o |=—PAD12
WREGEN—= Vaohage Regulator ANS =+—PADOE ANG (=— |=—PAD13
WD 2 - ANG -— PALOE ANG |- -+—PAD14
VS51,2 -] ANT -— PACOT ANT |=— |=—PaAD15S
B0 e | FiNGl-wire Background PIXD e == PKD , XADDR14,
=] Cl baad -
" Debug Med CPU2 PPAGE PIx1 PK1 ! XADDA1S!
P P2 [wai i | |+aPK2 | XADDRIE,
VODPLL -] Clock and P3| = E [==FPK3 ! XADDR17!
pLL Pesst Flxd [== PKd | XADDRIE,
VESPLL = Generalion Parlodic Inteript FING |es ++ PKS \ XADDRID,
EXTAL— Mehile COP Walzhdog TS [== == pK7 | ELS !
NTAL =— CIocK Monltor JERR .
RESET =+ Breakpaoints 100 [<= PTO
100 [== FTi
PE}—a= || TFET
FE1—m = TR ICEZ2 s . | pT2
PEZ e | R System Enhanced Capture 1003 (+=| o | == PT2
PEZ = | — Intagration Timear I0C4 el 2|0 = pTy
o [==| [5TRE
PEd.---II:l_- O |wal ECLE Module 1OCE [| PTE
G (SIM) 1006 (== - FTE
FES e | BACIDA 10T b e PTT
PEG = =+ MODE
PET == lae| MOACC LIRS Sci0 RED | = P50
THD | <= P51
TEST—= S0 RAD | - ps2
REREEREIEEEERERE; D0 -l o |emps2
. MISG Py
Multiplexed Address Data Bus Mo T [=0 Gl i £
PIOREPEE TRERERAE |0 ¥t | [k &
S5 |- ¥ — - PET i
DORA CODRE PYY =
BOLZ RXE [=— =
FTA FTE (J1850) THR || o || = PIAD E
=
T I = R
r T GEEZEHEE = =z
%] at | - E
& Eg Cofiodao)Gﬁ.N1 RXCGAN = [l | [PM2]
] THCAN [—=| & | O [= P4]
v—v—,_-—-—.-n:nE h-Eu:h-:rEN.-E [vi) =] =
CTCEETEET CEET@CIELLDLCT - — - c
oCoOooDoOoo g Qoo oooO0 = o
CoOgoOoOoO0 OoOodaood - Reka == MG m
_______ B T P R it R pist A
| ; [N =) \ S
Multiplesed & s T e m ok & R e daol-= = =
1 VL L T o *L ¥ ef S gL of FL ST oL | E
WideBus FEEE bk E GEEGEEERE . £
1 [R ' [i o _E
e KD [== PO H
Muttiplexed £ £ B2 E ZT 2 i e P it 2
(MarawBusE £ g Z Z {58 | . KWlG == 5 [0 |==pus o
remm--m--- mmmmmmm— - SCL KT [- PJT
Irmam:l Logic 2.5V ' Crrivar BV g IR w T e PO
o = o= Pk [l | P | wn PP
=he = || |
L __L_ PWME [=—e| Pz o PF2
PWM P [—| KWP3 (= o & == PF3
- AD Converter 5V & FiMa || KP4 | g == ppd
FLL 2.5V Valtage Regulator Refersnce FAME L] P e es PPS
VODPLL = VDDA — PG (e e| KWPE [== PPE
WESPLL 5 PWHT || KIWPT [s PRT
L wEL
= MISD =] KWHD [== PHI
MCS] at—=| KWHT [== PH1
Voltage Regulator BV & 1D SPH
o — X e g | oo
5 T [
1 MIS0 | KWH {=el O | [on PHA
SFIz MCS] |- FWHE [== PHS
SOK (S| KWHE [==] == PHa
TE || KWHT == == PHT

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

Ports on the HC12
» How do you get data out of computer to the outside?

* A Port on the M(C9S12 is a device that the MC9S12 uses to
control some hardware.

» Many of the MC9S12 ports are used to communicate with
hardware outside of the MC9S12.

» The MC9S12 ports are accessed by the MC9S12 by reading and
writing memory locations $0000 to $03FF.

» Some of the ports we will use in this course are PORTA,
PORTB, PTJ and PTP:

« PORTA is accessed by reading and writing address $0000.
- DDRA is accessed by reading and writing address $0002.

* PORTRB is accessed by reading and writing address $0001.
- DDRB is accessed by reading and writing address $0003.

* PTJ is accessed by reading and writing address $0268.
- DDRIJ is accessed by reading and writing address $026A.

« PTP is accessed by reading and writing address $0258.
- DDRP is accessed by reading and writing address $025A.

» On the DRAGON12-Plus EVB, eight LEDs and four seven-seg-
ment LEDs are connected to PTB.

Electrical Engineeri
ectrical Engineering Lecture 8 EE 308 Spring 2016

New Mexico Institute of Mining and Technology

16x2 Character LCD Motor Driver Potentiometer connected
\ to ATD

7-Segment 8 LEDs Serial Comm.
| Port

8 DIP Switches Reset Button Debounced Keyboard

4 Push buttons Connections to Ports

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

-Before you can use the eight individual LEDs or the seven-
segment LEDs, you need to enable them:

- Bit 1 of PTJ must be low to enable the eight individual
LEDs.

* To make Bit 1 of PTJ low, you must first make Bit 1
of PTJ an output by writing a 1 to Bit 1 of DDRJ.

* Next, write a 0 to Bit 1 of PTJ.

- Bits 3-0 of PTP are used to enable the four seven-segment
LEDs.

- To use the seven-segment LEDs, first write 1’s to Bits 3-0
of DDRP to make Bits 3-0 of PTP outputs.

* A low PTPQ enables the left-most (Digit 3) seven-seg-
ment LED

* A low PTP1 enables the second from the left (Digit 2)
seven-segment LED

* A low PTP2 enables the third from the left (Digit 1)
seven-segment LED

* A low PTP3 enables the right-most (Digit 0) seven-
segment LED

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

— To use the eight individual LEDs and turn off the seven-
segment LEDs, write ones to Bits 3-0 of PTP, and write a 0 to
Bit 1 of PTJ:

BSET DDRP#$0F ; Make PTP3 through PTPO outputs
BSET PTP#$0F ; Turn off seven-segment LEDs
BSET DDRJ,#%$02 ; Make PTJ1 output

BCLR PTJ,#$02 ; Turn on individual LEDs

* On the DRAGON12-Plus EVB, the LCD display is connected to
PTK

* When you power up or reset the MCS9S12, PORTA, PORTB, PTJ
and PTP are input ports(!).

* You can make any or all bits of PORTA, PORTB PTP and PTJ
outputs by writing a 1 to the corresponding bits of their Data Di-
rection Registers (DDRs).

— You can use DBug-12 to manipulate the IO ports on the
68HCS12

* To make PTB an output, use MM to change the con-
tents of address $0003 (DDRB) to an $FF.

* You can now use MM to change contents of address
$0001 (PORTB), which changes the logic levels on the
PORTB pins.

* If the data direction register makes the port an input,
you can use MD to display the values on the external
pins.

Electrical Engineering

New Mexico Institute of Mining and Technology

Lecture8 EE 308 Spring 2016

Using Port A of the 68HC12

To make a bit of Port A an output port, write a 1 to the

corresponding bit of DDRA (address 0x0002).

To make a bit of Port A an input port, write a 0 to the
corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an input port(!).

DDRAY

DDRAG6

DDRA5

DDRA4

DDRA3

DDRA2

DDRA1

DDRAO

Reset

0

0

0

0

0

0

0

0

$0002

For example, to make bits 3—0 of Port A inputs, and bits 7 — 4
outputs, write a OxF0 to DDRA.

To send data to the output pins, write to PORTA (address 0x0000).
When you read from PORTA input pins will return the value of the
signals on them (0 = 0V, 1 = 5V); output pins will return the

value written to them.

Reset

PA7

PA6

PAS

PA4

PA3

PA2

PA1

PAO

$0000

Port B works the same, except DDRB is at address 0x0003 and
PORTB is at address 0x0001.

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

; A simple program to make PORTA output and PORTB
; input, then read the signals on PORTB and write these
; values out to PORTA

prog: equ $2000

PORTA: equ $00
PORTB: equ $01
DDRA: equ $02
DDRB: equ $03

org prog
movb #$t£, DDRA ; Make PORTA output

movb #$00,DDRB ; Make PORTB input

ldaa PORTB
staa PORTA
swi

« Because DDRA and DDRB are in consecutive address
locations you could make PORTA an output and PORTB an
input in one instruction:

movw #$ff00,DDRA ; FF -> DDRA, 00 -> DDRB

Electrical Engineeri
ectrical Engineering Lecture 8 EE 308 Spring 2016

New Mexico Institute of Mining and Technology

GOOD PROGRAMMING STYLE
1. Make programs easy to read and understand.
* Use comments
* Do not use tricks
2. Make programs easy to modify
 Top-down design
« Structured programming — no spaghetti code

* Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do

SO

Electrical Engineeri
ectrical Engineering Lecture 8 EE 308 Spring 2016

New Mexico Institute of Mining and Technology

TIPS FOR WRITING PROGRAMS
1. Think about how data will be stored in memory.
* Draw a picture
2. Think about how to process data

* Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to
individual instructions

 Top-down design

4. Use names instead of numbers

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

Another Example of an Assembly Language Program
» Find the average of the numbers in an array of data.
» The numbers are 8-bit unsigned numbers.

* The address of the first number is $E000 and the address of the
final number is $EO01F. There are 32 numbers.

* Save the result in a variable called answer at address $1000.
Start by drawing a picture of the data structure in memory:

FIND THE AVERAGE OF NUMBERS IN ARRAY FROM
0XE000 TO 0XEO1F

Treat numbers as 8—bit unsigned numbers

0xE000

DO |=|U |

—_
[

OxEO1F

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

Start with the big picture

Find average of 8-bit numbers in array from 0xE000 to 0xEO1F

0xE000

|~ |UT| &~

OxEO1F

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

Add details to blocks

0xE000

DO~ |UI|N

—_
—

OxEO1F

Decide on how to use CPU registers for processing data
Find average of 8-bit numbers in array from 0xE000 to OxEQ1f
Sum: 16-bit register. Can use D or Y

No way to add 8—bit number to D
Can use ABY to add 8-bit number to Y: (B)+(Y) =Y

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

Add more details: Expand another block

Process
Entries

X = 4 0xE000
5
1
8
6
11
OxEO1F

More details: How to tell when program reaches end of array

How to check if more to do?
If X < 0xE020, more to do.

BLT or BLO; Addresses are unsigned, so BLLO
How to find average? Divide by LEN
To divide, use IDIV

TFRY,D ; transfer Y to D

LDX #LEN ; load divisor in X
IDIV ; (D)/(X)=>X

Electrical Engineering

New Mexico Institute of Mining and Technology

Lecture8 EE 308 Spring 2016

Write program

;Program to average 32 numbers in a memory array

prog:
data:

len:

loop:

equ $2000
equ $1000
array: equ $SE000
equ 32
org prog
Idx #array ; initialize pointer
Idy #0 ; initialize sum to 0
Idab 0,x ; get number
aby ; add to sum
inx ; point to next entry
cpx #(array+len) ; more to process?
blo loop ; if so, process
tir y,d ; to divide, need dividend in D
Idx #len ; to divide, need divisor in X
idiv ; D/X quotient in x, remainder in D
stx answer ; done — save answer
swi
org data

answer: ds.w 1

; reserve 16-bit word for answer

 Important: Comment program so it is easy to understand.

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

The assembler output for the above program

Freescale HC12-Assembler
(c) Copyright Freescale 1987-2009
Abs. Rel. Loc Obj. code Source line

1 1 ;Program to average 32 numbers in a memory array
2 2

3 3 0000 2000 prog: equ $2000

4 4 0000 1000 data: equ $1000

5 5

6 6 0000 E000 array: equ $E000

7 7 0000 0020 len: equ 32

8 8

9 9 org prog

10 10

11 11 a002000 CEEO 00 ldx #array ; initialize pointer

12 12 a002003 CDO00 00 Idy #0 ; initialize sum to O

13 13 a002006 E600 loop: 1dab 0,x ; get number

14 14 a002008 19ED aby ; odd - add to sum

15 15 a00200A 08 inx ; point to next entry

16 16 a00200B 8EEO0 20 cpx #(array-+len) ; more to process?
17 17 a00200E 25F6 blo loop ; if so, process

18 18

19 19 a002010 B764 tfr y,d ; To divide, need dividend
20 20 a002012 CEO00 20 1dx #len ; To divide, need divisor

21 21 a002015 1810 idiv ; D/X quotient in X, remain-
der

22 22 2002017 7E10 00 Stx answer ; done -- save answer

23 23 a00201A 3F swi

24 24

25 25 org data

26 26 a001000 answer: ds.w 1 ; reserve 16-bit word for 27
27

Electrical Engineering

New Mexico Institute of Mining and Technology Lecture 8 EE 308 Spl"ing 20 16

Here is the .s19 file:

S11E2000CEE000CDO000E60019EDO8SSEE02025F6B764CE002018107E10003FAB
S9030000FC

