EE 271 - Exam 1

Feb. 14, 2020

1. Consider the following arrays

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ccc}
1 & 4 & 2 \\
2 & 4 & 100 \\
7 & 9 & 7
\end{array}\right] \\
\mathbf{B}=\ln (A)
\end{gathered}
$$

Evualuate the maximum value in the vector resulting from element-by-element multiplication of the second column of \mathbf{B} with the first column of \mathbf{A}
2. Planets and planetary satellites move in elliptical orbits. The general equation for an ellipse centered at the origin, whose major and minor axes lie along the x and y axes, is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

This can be solved for y as follows:

$$
y= \pm b \sqrt{\left(1-\frac{x^{2}}{a^{2}}\right)}
$$

Create a function that will plot the entire ellipse, given the inputs a and b. Obtain the plot for the case $a=1, b=2$.
3. Consider the array \mathbf{A}

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-8 & -1 & 33 \\
-17 & 6 & -9
\end{array}\right]
$$

Write a program that computes the array \mathbf{B} by computing the natural logarithm of all the elements of \mathbf{A} whose value is no less than 1, and adding 20 to each element that is equal to or greater than 1. Do this in two ways:
(a) By using a for loop with conditional statements
(b) By using a logical array as a mask

