4.2 Show how the function $f\left(w_{1}, w_{2}, w_{3}\right)=\sum m(1,2,3,5,6)$ can be implemented using a 3-to- 8 binary decoder and an OR gate.
4.4. Consider the function
$f=\bar{w}_{1} \bar{w}_{3}+w_{2} \bar{w}_{3}+\bar{w}_{1} w_{2}$.

Use the truth table to derive a circuit for f that uses a 2-to-1 multiplexer.
4.16 Consider the multiplexer-based circuit illustrated in Figure P4.1. Show how the function

$$
f=w_{2} \bar{w}_{3}+w_{1} w_{3}+\bar{w}_{2} w_{3}
$$ can be implemented using only one instance of this circuit.

4.22 Figure P 4.3 shows a modified version of the code for a 2 -to- 4 decoder in Figure 4.37. This code is almost correct but contains one error. What is the error?

```
module dec2to4 (W, En, Y);
    input [1:0] W;
    input En;
    output reg [0:3] Y;
    integer k;
    always @(W, En)
        for (k=0; k<= 3; k= k+1)
            if (W == k)
            Y[k] = En;
```

endmodule

