
Frequency Domain Analysis using Pulses

The following will give background on pulse analysis of Linear Time Invariant
(LTI) systems. Then some motivation for why we want to perform pulse analysis
is given. Once we are motivated to actually do pulse analysis we will dive into
the subtleties and real-life applications of pulse-analysis. Finally, a project will
be described which will take you through the process of designing a filter and
analyzing it using pulses.

1 Pulse Analysis of LTI Systems - Ideal

Pulse analysis is the process of using a pulse function as the input to an LTI
system to determine its magnitude impulse response. For example, if we build a
filter and wish to determine the frequencies for which it passes we could simply
send a pulse through the system and take the FFT; but more on this later.
For now let’s look at the theory behind pulse analysis. We know from Linear
Signals and Systems that the output of a filter is given by the the time-domain
signal convolved with the time-domain transfer function. This idea is shown as
a graphical system in Figure 1.

Figure 1: LTI System in the time-domain. The output is defined by the con-
volution of the input signal and the transfer function/impulse response of the
system.

From Linear Signals and Systems we also know that convolution in the time-
domain is equivalent to multiplication in the frequency-domain. That is to say
that we take the fourier transform of the input signal and the impulse response
and multiply them together to get the resulting signal representation in the
frequency domain. This idea is shown as a graphical system in Figure 2.

Figure 2: LTI System in the frequency-domain. The output is defined by the
multiplication of the Fourier Transforms of the input signal and the transfer
function/impulse response of the system.

Typically, we must perform an Inverse Fourier Transform (IFT) of the output
Y (f) in order to obtain the information we want. For example, if we want to
know what a signal looks like after passing it through a low-pass filter we begin
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by taking the Fourier Transform (FT) of the signal and the FT of the filter’s
impulse response. Then we multiply the resulting FTs together and take the IFT
of the result to obtain the filtered signal. However, some things are best left in
the frequency domain. For example, the low-pass filter itself is best represented
in the frequency domain as we can see the gain that the filter applies to various
frequencies and we can easily see the frequencies that the filter won’t pass.

Let’s have a look at the Dirac-Delta function, i.e. a pulse. The dirac-delta
function is defined as having a height of 1 at a specific time or frequency and 0
everywhere else. In mathematical notation the Dirac-Delta function is given by
Equation 1.

δ(t) =

{
1, t = 0

0, t 6= 0
(1)

The FT of the Direc-Delta function is a 1 for all frequencies and can be repre-
sented mathmatically as Equation 2

δ(t)
F−→ 1 (2)

Fourier Transforms come in pairs though, so if we have a pulse in the frequency-
domain the equivalent IFT is a 1 for all of time. Mathematically this is repre-
sented by Equation 3 and Equation 4 respectively.

δ(f) =

{
1, f = 0

0, f 6= 0
(3)

1
F−1

←−−− δ(f) (4)

Let’s examine the dirac-delta function in regards to the LTI system shown in
Figure 1. Let x(t) = δ(t). As we know from Linear Signals and Systems, the
convolution of a function with an impulse is just the function. This concept is
shown in Figure 3

Figure 3: Dirac-Delta as the input to our LTI system. The output is simply the
transfer function/impulse response of the system.

We can also represent Figure 3 in the frequency-domain. We just take the
FT of the dirac delta function as our input. This concept is shown in Figure 4
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Figure 4: Dirac-Delta as the input to our LTI system represented in the
frequency-domain. The output is simply the Fourier Transform of the trans-
fer function/impulse response of the system.

What are the consequences of Figure 4? Well if we have a filter with an
unknown shape, or even a known shape that we wish to verify, we see that
we can obtain the frequency response by inputing an impulse into our system.
This is why the transfer function is so cleverly called the impulse response! Let’s
move on to motivating ourselves about why we would want to use pulse analysis
by looking at what the alternative is.

2 Motivation

It is a common procedure to find the frequency response of a circuit. Let’s say
we designed a lowpass filter circuit. The frequency response of this theoretical
lowpass circuit is shown in Figure 5. As you can see this lowpass circuit only
treats frequencies between 0-1500Hz. This frequency response plot contains a
lot of great information but after we design a filter circuit in real-life we aren’t
just magically given a frequency response plot (at least not yet, that’s the point
of this project) that tells us how our filter acts.

Figure 5: The frequency response of a theoretical lowpass circuit.

In order to generate a plot similar to the one in Figure 5 we must connect
our circuit to a function generator and an oscilloscope. We set the function
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generator to output a DC 1V signal. We adjust the amplitude knobs on the
oscilloscope until we can see the output and it tells us that the output of our
circuit is 22.3V. We calculate the dB ratio of the output to the input using
20log10(22.3/1) = 27dB. This gives us the point for f = 0 on the plot in ??.
Next we set the function generator to give us the a 1Vpp sinusoid at 100 Hz.
We twist some more knobs on the oscilloscope till our signal fits on the window
and we have the oscilloscope give us the peak-peak measurement of the voltage;
The oscilloscope tells us that the output is 5.6Vpp. We calculate the dB ratio
again 20log10(5.6/1) = 14.9363dB. We have now obtained a second point on
our plot for f = 100Hz. We repeat this process 18 more times to obtain the
points spaced by 100 Hz all the way up to 2000 Hz. We have now spent 15
minutes of our time and obtained the plot shown in Figure 6. It’s not bad, but
what if I ask you to do this out to 4000 Hz or even worse 20000 Hz; it would
take forever and your frequency response plot is still missing chunks and barely
covers the audible frequency range!

Figure 6: The frequency response plot that we get for 15 minutes of our time.

This large amount of time mindlessly collecting data points for an incomplete
graph is exactly what we are trying to avoid doing by using pulses to analyze our
filters. As we saw earlier in Section 1: Pulse Analysis of LTI Systems - Ideal, if
we put a dirac-delta pulse into our lowpass circuit then the output of the circuit
will be the frequency response H(f) that we desire. To obtain this frequency
response visually on the oscilloscope we simply ask it kindly to take the Fast
Fourier Transform (FFT) for us. For discrete signals there is a version of the
Fourier Transform called the Discrete Fourier Transform (DFT). The FFT is
an improvement of the DFT for 2 based number systems (i.e. binary). The
implementation details of the DFT and FFT are not important to us now as
you’ll learn about them in DSP, but it is good to know what’s going on inside
the oscilloscope. Which brings me to another point, the oscilloscopes we use
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are DIGITAL oscilloscopes. They captures signals using an ADC, meaning the
signals are discrete and not continuous! Only the older cathode ray tube oscil-
loscopes show continuous signals and so they are known as analog oscilloscopes.
But now that we have some motivation in mind let’s look at some issues with
pulse analysis that come from the fact that reailty is not ideal.

3 Pulse Analysis of LTI Systems - Reality

The first issue and probably the only real issue that we will come across when
implementing pulse analysis in reality rather than in theory is that the Dirac-
Delta function does not and cannot exist. The Fourier Transform of the Dirac-
Delta function tells us as much; it is composed of every frequency from 0 to
infinity. To put this in perspective the highest frequency a person has ever
created is 1027 Hz i.e. there is a very very large gap of frequencies that sits
between 1027 Hz and infinity that we cannot make. Therefore, we must choose
a different pulse. One that we can create in real life. The only requirement of
the pulse that we create is that its frequency response is flat (i.e. constant, like
Dirac-Delta) over the frequency range which we want to investigate. One of the
pulses that we can create and that we will use for this project is a rectangular
pulse (although we still can’t even create a perfect rectangular pulse but we
can get close approximations, that’s for a different day/project though). For
our theories we will use a rectangular pulse that is centered at t = 0 and has a
width of T but for the project you can use a square wave with a very small duty
cycle and a slow frequency (i.e. a pulse train). The pulse trains (i.e. square
wave with low duty cycle) can be crafted from a variety of sources such as a
microcontroller or a 555 timers. If you don’t know how to craft a pulse train with
a 555 timer then check out the Art of Electronics. It is a superb textbook that
not only does a great job of explaining various circuits but is also has a whole
libraries worth of them. Anyways, let’s study up on a single rectangular pulse.
Figure 7 shows the anatomy of the rectangular pulse which we will examine and
Equation 5 gives the mathematical representation of our rectangular pulse.
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Figure 7: A rectangular pulse of width L.

rectT (t) =

{
1,−T/2 < t < T/2

0, any other time
(5)

Let’s begin by finding the Fourier Transform of our rectangular pulse. The
form of the Fourier Transform that we are interested in is given by Equation 6
because it gives us the FT in terms of the frequency, f , instead of the angular
frequency, ω.

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (6)

Evaluating Equation 6 with x(t) = rectT (t) yields

RECTT (f) =

∫ T/2

−T/2
e−j2πftdt

RECTT (f) = −e
−j2πft

j2πf

∣∣∣t=T/2
t=−T/2

RECTT (f) =
ej2πfT/2 − e−j2πfT/2

j2πf

RECTT (f) =
sin
(
2πf T2

)
πf

RECTT (f) =
2T2 sin

(
2πf T2

)
2πf T2

RECTT (f) = Tsinc(2πf
T

2
) = Tsinc(πfT ) (7)
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So the Fourier Transform of our rectangular pulse is simply a sinc function
parameterized by the width of our rectangle. Let’s see what the Fourier Trans-
form looks like for various widths of the rectangle. Figure 8 shows rectangular
pulses with T = 0.1, T = 1, and T = 40 respectively. Under each rectangular
pulse is the corresponding Fourier Transform. There are two things to learn
from Figure 8. Notice that as the rectangle gets wider the Fourier Transform
gets skinnier and vice versa as the rectangle gets skinnier the Fourier Transform
gets wider. If we allowed the rectangle on the left to become skinny enough so
that it’s width was almost 0 then the Fourier Transform would almost constant;
this is because a rectangle of virtually no width is equivalent to a Dirac-Delta
function and so it’s Fourier Transform is a constant. Now as we move to the
right in Figure 8 the rectangle is getting wider and the Fourier Transform is
approaching a pulse. If we allowed the rectangle to have infinite length so that
it is a constant for all of time then the Fourier Transform would become the
Dirac-Delta function as expected. Those are the two things to learn. A rectan-
gle of infinitesmal width is equivalent to a Dirac-Delta function and a rectangle
of infinite width is equivalent to a constant; meaning that Fourier Pairs for the
Dirac-Deltas apply to the edge cases of the rectangular function. For this reason
we choose the rectangular pulse to replace our Dirac-Delta pulse.

Figure 8: Variously lengthed rectangular pulses and their Fourier Transforms.

To be particular, the feature of the rectangular pulse that we will exploit is
the feature where a skinny enough rectangle has a Fourier Transform that starts
to flatten over the frequency-domain. This feature is exactly our requirement
for pulse analysis; i.e. the Fourier Transform of the chosen pulse signal must be
constant over the frequency range of interest. Now let’s redo the capturing of
the frequency response of our low pass filter.
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4 Pulse Analysis Walkthrough

We want to repeat the experiment in Section 2: Motivation but let’s require that
we find the frequency response over a frequency range of 20000 Hz. We could
do it by hand by twisting knobs on the function generator and oscilloscope
for an hour or we could just send a pulse in and take an FFT. Let’s do the
latter. First we need to find a pulse skinny enough so that the magnitude of
the Fourier Transform is flat over the 20kHz range. Let’s take the definition
of ”flat” to mean that there is a -3dB drop or less across the 20kHz frequency
range. Well what about a pulse of 1 millisecond (i.e. L = 0.001)? This should
be easy enough to craft with a microcontroller or a 555 timer. Figure 9 shows
the magnitude frequency response (i.e. the magnitude of the Fourier Transform
converted to dB). The plot on the left shows the magnitude frequency response
over a 500kHz range. The plot on the right shows the magnitude frequency
response over a 40kHz range and the y-axis is scaled to show the -3dB range
better. The red line shows the -3dB down range that we need to be flat over.
The plot on the right shows us that for a 1 millisecond rectangular pulse the
magnitude frequency response immediately drops far below the -3dB line. So 1
millisecond won’t work.

Figure 9: Magnitude Frequency Response of a Rect Pulse with T=1ms (Blue)
and the -3dB down line (Red). Left: 500kHz range Right: 40kHz range

Let’s try 1 microsecond, (i.e. L = 0.000001). Figure 10 shows the results. If
we have a look at the left graph we see that the frequency spectrum has flattened
quite considerably. The -3dB crossing is somewhere around 15kHz now. On the
right we see that magnitude frequency response of the 1 microsecond pulse
doesn’t even drop half of a dB over the entire 40kHz range. Perfect!
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Figure 10: Magnitude Frequency Response of a Rect Pulse with T=1us (Blue)
and the -3dB down line (Red). Left: 500kHz range Right: 40kHz range

:w

Could we get better? Of course! Let’s see what a 1 nanosecond pulse would
look like. Figure 11 shows the results. Now the frequency range is perfectly flat
over not only the 40kHz range but it’s also flat over the entire 500kHz range.
Even better!

Figure 11: Magnitude Frequency Response of a Rect Pulse with T=1ns (Blue)
and the -3dB down line (Red). Left: 500kHz range Right: 40kHz range
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But wait. What is that. Have a look back at Figure 10 and Figure 11 and
take note of the maximum y-axis value. For the 1us pulse the magnitude is
about -120dB but for the 1ns pulse the magnitude is about -180dB. That is a
-60 dB drop, which for the uninitiated is a ton! In terms of voltage a -60dB drop
is a difference of 1000V in input to output voltage; if we put 1000V we would get
out 1V. What does this mean for our pulse? It means that the thinner our pulse
the more voltage we have to put in to overcome noise. In other words, if we use
a 1V 1us rectangular pulse to probe our filter we would have to us a 1000V 1ns
rectangular pulse to get the same output from the filter. This is problematic
because transitioning from 0V to 1000V in a one nanosecond period is rather
impossible as crafting even a 1V nanosecond pulse will pose some interesting
electrical engineering problems. For us that means that we should not overdo
things, let’s use the 1us pulse as it is flat over our region of interest and it is
much easier to craft.

To proceed we set our function generator to make a 1us 1V pulse and input
it into our theoretical lowpass filter from Figure 5. On the oscilloscope we turn
on the FFT and set the frequency range to 20kHz. What’s the output look
like? Pretty much the same as Figure 6 except the zeros at the end of the filter
extend out to 20kHz and the spacing between our points will be much smaller
(remember the FFT is a DFT which isn’t continuous). Now we can have the
oscilloscope generate a screenshot of the FFT if we need it for a report or we
could have it output the FFT to a CSV file so we could explore it in Matlab. And
how long did this take? Probably about a minute. To formalize the process we
generally connect the function generator directly to the oscilloscope and output
the pulse. Then we take the FFT of the pulse on the oscilloscope and ensure
that whatever pulse parameters we have chosen produce a flat FFT over the
frequency range of interest. Then we just unplug the function generator from
the oscilloscope and plug it into the input of the circuit and the output of the
circuit to the oscilloscope and observe. One last thing to note before we move on
to the project. Look at Figure 5 again. Notice how the magnitude response is in
the positive dB range? That’s because it’s been a lowpass amplifier this whole
time! I was lying to you. But all the same the pulse analysis process works
for examining how the amplifier responds to different frequencies. In fact, pulse
analysis works for a great number of things and isn’t simply constrained to
filters or amplifiers. For example, you could take a group of working circuit
boards and pass a pulse through their various inputs and power ports to obtain
the frequency response of working boards. Then you could take a board that
is broken and pass pulses through all the various ports and whichever port has
a differing frequency response probably contains the components that broke.
If you have a large enough data-set you could set up some machine learning
algorithms to automate the process of identifying working and non-working
boards; even potentially having the machine learning algorithms learn exactly
which parts are broken on the board given the frequency responses.
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5 Project

1. Design three filters. A passive low-pass RC filter, a passive high-pass RC
filter, and an active low-pass Butterworth filter. For the passive and active
lowpass filters make the cutoff frequency 25kHz. For the high-pass filter
make the cutoff frequency 15kHz.

2. Find the transfer functions for these filters and plot the magnitude fre-
quency response in dB using Matlab.

3. Build the filters on a breadboard.

4. Come into the lab on one of the workshop days.

5. Obtain the magnitude frequency response plot of the filters over the 40kHz
range by hand using steps of 1kHz.

6. Obtain the magnitude frequency response plot of the filters over the 40kHz
range using pulses.

7. Connect the output of your high-pass filter to the input of the lowpass
filter. Obtain the magnitude of this new filter over the 40kHz range using
pulses.

8. At home plot the magnitude frequency response plot data that you ob-
tained by hand. Compare the FFT and by-hand plots to your Matlab
results.

6 Report

Give a Teare-style report (i.e. Intro, Background, Results, Discussion, Conclu-
sion). The Background should basically re-iterate what I have said here but in
your own words; we are checking for understanding so don’t skip out here. The
Results should include the designs of your filters and the values of specific com-
ponents, Matlab plots of the magnitude response for the transfer functions of
the filters, the plots of your data that you found by hand, and the FFT plots as
generated by the oscilloscope. The Discussion should compare and contrast the
plots from the Results section. The Intro and Conclusion should be written last
and the Conclusion should include your thoughts on pulse analysis vs by-hand
analysis.
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