Homework 6: EE 252 Digital Electronics

1 Show how the function $f\left(w_{1}, w_{2}, w_{3}\right)=\sum m(1,2,3,5,6)$ can be implemented using a 3-to-8 binary decoder and an OR gate.
2. Consider the function

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{2} \bar{w}_{3}+\bar{w}_{1} w_{2} .
$$

Use the truth table to derive a circuit for f that uses a 2 -to-1 multiplexer.
3. Consider the multiplexer-based circuit illustrated in Figure P4.1. Show how the function

$$
f=w_{2} \bar{w}_{3}+w_{1} w_{3}+\bar{w}_{2} w_{3} \text { can be implemented using only one instance of this circuit. }
$$

Figure P4.1 A multiplexer-based circuit.
4. Figure P4.3 shows a modified version of the code for a 2 -to- 4 decoder in Figure 4.37. This code is almost correct but contains one error. What is the error?

```
module dec2to4 (W, En, Y);
    input [1:0] W;
    input En;
    output reg [0:3] Y;
    integer k ;
    always @(W, En)
        for \((k=0 ; k<=3 ; k=k+1)\)
            if ( \(\mathrm{W}=\mathrm{k}\) )
                \(Y[k]=E n ;\)
```

endmodule
Figure P4.3 Code for Problem 4.22.

