EE 252 Digital Electronics:

Name:

1. Implement the sequential circuit described by the state table below, using T Flip Flops

Present state	Next state		
	$w=0$	$w=1$	
		Output	
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$
z			
A	00	00	01
B	01	00	11
11	00	11	0
10	$d d$	$d d$	d

2. Implement the same sequential circuit, using JK Flip Flops.

- If a flip-flop in state 0 is to remain in state 0 , then $J=0$ and $K=d$ (where d means that K can be equal to either 0 or 1).
- If a flip-flop in state 0 is to change to state 1 , then $J=1$ and $K=d$.
- If a flip-flop in state 1 is to remain in state 1 , then $J=d$ and $K=0$.
- If a flip-flop in state 1 is to change to state 0 , then $J=d$ and $K=1$.

3. - Design a counter that counts pulses on line w and displays the count in the sequence $0,2,1,5,0,2, \ldots .$. Use JK flip-flops in your circuit.
