Homework 4: EE 252 Digital Electronics

1. For the timing diagram in Figure P 2.4 , synthesize the function $f\left(x_{1}, x_{2}, x_{3}\right)$ in the simplest product-of-sums form.

2. Design a circuit with output f and inputs x_{1}, x_{0}, y_{1}, and y_{0}. Let $X=x_{1} x_{0}$ and $Y=y_{1} y_{0}$ represent two 2-digit binary numbers. The output f should be 1 if the numbers represented by X and Y are equal. Otherwise, f should be 0 .
(a) Show the truth table for f.
(b) Synthesize the simplest possible product-of-sums expression for f.
3. Implement the function in Figure 2.31 using only NAND gates.

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Figure 2.31 Truth table for the three-way light control.
4. Implement the function in Figure 2.31 using only NOR gates.

