Homework 6: EE 252 Digital Electronics

1. Show how the function $f\left(w_{1}, w_{2}, w_{3}\right)=\sum m(1,2,3,5,6)$ can be implemented using a 3-to- 8 binary decoder and an OR gate.
2. Consider the function

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{2} \bar{w}_{3}+\bar{w}_{1} w_{2} .
$$

Use the truth table to derive a circuit for f that uses a 2-to-1 multiplexer.
3. For the function $f\left(w_{1}, w_{2}, w_{3}\right)=m(0,2,3,6)$, use Shannon's expansion to derive an implementation using a 2 -to- 1 multiplexer and any other necessary gates.
4. Consider the multiplexer-based circuit illustrated in Figure P4.1. Show how the function

$$
f=w_{2} \bar{w}_{3}+w_{1} w_{3}+\bar{w}_{2} w_{3}
$$

can be implemented using only one instance of this circuit.

