Lab 3
Interrupts and Visualization Tools

September 6, 2012

In this lab you will learn how to use hardware and softwarerinitpts. Also, you will get familiar with the visualization
tools and the real time data exchange capability of the CBBX3

1 Introduction

The DSP/BIOS real-time operating system available on th8 @xvides real-time scheduling, analysis, and data teansf
capabilities for an application running on the DSP. The BBBS has a preemptive real-time scheduler that determines
which one of a number of different threads is executed by t8€ At any given time. Threads are DSP/BIOS objects that
contain program code (functions). There are five differbraads that can be used in a DSP/BIOS application:

1. Hardware interrupts (HWIs) have the highest priorityeiFlexecution is triggered by interrupts from peripherald a
they always run to completion.

2. Software interrupts (SWIs) are triggered from within agrnam. They run to completion unless preempted by a high
priority SWI or HWI.

3. Periodic functions (PRDs) are a special type of SWI trigddy a dedicated hardware timer.

4. Tasks (TSKs) are created dynamically within a DSP/BIOSieation, and they will start execution at the start of the
DSP/BIOS application.

5. Idle functions (IDLs) are executed repeatedly as a path@flowest priority thread. They contain functions that
communicate real-time data analysis from the DSP to the.Host

The problem with hardware interrupts, is that the CPU cantice multiple interrupts at the same time. This will cause
events to be missed and interrupts to be ignored and real+iiay be missed. SWIs are triggered within programs; and
different SWIs will be serviced based on the priority levéligh when designed correctly will help achieve real-time.

2 LAB

The C6713 comes with a variety of visualization tools. Udimg DSP/BIOS real-time analysis tools the performance
of the DSP may be monitored, and hence provide a tool for apdition. Some of these tools include:

e CPU load graph
e Execution graph
e Message log

In order to observe the operation of the D$Pj nt f may be used to display the values of certain variables. THis w
work, but the execution of ther i nt f function will load the CPU and eventually will prevent it froachieving real-time.
Another way is to create a log-event and useltlds pri nt f function instead. The€ OGobject inserted sets up a buffer
in which theLOG pri nt f function can append messages. The buffer contents is senttst computer in real time
during the execution of an Idle function.

2 Lab

2.1 Part 1: Hardware Interrupts

Create a program to receive a signal at the LINE IN input anchimsmit it through the LINE OUT output in real-time.
(What does real-time’ mean ?)

1. Start a new project
2. Create a DSP/BIOS file and add it to the project

3. Create a hardware interrupt that is triggered by the dateived from the MCBSP1. In the hardware service rou-
tine, read the data and retransmit it. Add to your sourcetiilacl ude csl irq. h. The CSL helps creating,
configuring and using the interrupts.

(@) Openthe DSP/BIOS FILE and click & hedul i ng.

(b) Click onHW - Har dwar e | nterrupt Service Routine Manager.
(c) SelectHW _I NT11 by right-clicking, then seled®r operti es.

(d) In the interrupt source field selddCSP_1_Recei ve.

(e) Inthef uncti on fi el denterthe name of the hardware interrupt function that youtwacreate This field
needs the assembly name of the function which is the name thgdu use in C preceded by an underscore

() Click ontheDi spat cher tab and seledse Di spat cher.

4. Add the following statements to enable interrupts aftar itialize the board and the codec:

| RQ map(l RQ EVT_RINT1, 11); // Map McBSPl using CSL function

| RQ cl ear (I RQ_ EVT_RI NT1);

| RQ gl obal Enabl e(); /1 Enable ints globally with bios function
| RQ enabl e(1 RQ EVT_RINT1); // Enable McBSP1l using CSL function

5. Test your hardware interrupt by connecting the inputtioegithe function generator or to any other source and make
sure that you are getting the same thing out.

2.2 Part 2: Software interrupts 2 LAB

2.2 Part 2: Software interrupts

Now we will try to create a software interrupt that will takévantage of the scheduling capability of the board. Here is
how you can create a software interrupt.

1. Open the DSP/BIOS FILE and click @& hedul i ng

2. Right-Click onSW - Sof t war e | nterrupt Manager and select nsert SW .
3. Rename th&W to something meaningful.
4

. View the properties of the creat&iV and insert the name of the function that you intend to creatgin do not
forget to precede the name of the software interrupt functio by an underscore

9]

. Inyour source file create the software interrupt functfaat will be executed when an interrupt occurs.
6. You cancut andpast e the same code that you had in your hardware interrupt fum¢tiay).

7. Now in yourHW interrupt function use the following functio®W _post (&wi _handl e). Whereswi _handl e
is the name of your software interrupt.

8. Test your code and make sure it works.

2.3 Part 3: CPU load
1. Turn ontheCPU Load G aph from theDSP/ Bl OS menu, run your code and record the CPU load.

2. Add to your source file#ti ncl ude <st di 0. h>, and modify your programto use tpei nt f function to display
the data that you are reading.

3. What is the CPU load ? Explain.
4. Now we will create dog event

(@) OpenthédSP/ Bl OS FI LE and click onl nst runent ati on.

(b) Right-Click onLOG - Event Manager and select nsert LOG

(c) Rename the log event to something meaningfull.

(d) View the properties of the log event you just created atelcspr i nt f to be thedat at ype.

(e) Now, in your code, instead of using tpei nt f useLOGpri ntf. Itis your responsibility to find out the
required arguments for this function

() TurnontheMessage Log from theDSP/ BI OS menu.
(g) Run your code and make sure it works.

5. What is the CPU load?

2.3 Part3: CPU load 2 LAB

6. Now try to find the CPU load difference between configurlmgMCBSP to read 16 bits from one channel and then

do another 16-bit read to get the other channel, and configtine MCBSP to read 32 bits at once and then use logic
and bit operations to separate the two channels.

(a) Setthe sampling rate to 8kHz
(b) Monitor the CPU load while performing a 32-bit read frame todec.

(c) Monitor the CPU load with the default setting that alloyesi to read only 16 bits at a time.
(d) Which approach is faster and why?

	Introduction
	Lab
	Part 1: Hardware Interrupts
	Part 2: Software interrupts
	Part 3: CPU load

