Important Remarks

- \bullet Homework is due on February 6 at the beginning of class.
- 1. Problem 2.23
- 2. Problem 2.25
- 3. Problem 2.28
- 4. Problem 2.29

The circuit shown in Fig. P2.22 is identical to the circuit given in Problem 2.20. Use a Δ -Y transformation on the 2-S, 3-S, and 5-S conductances, and then combine elements in series and parallel to determine G = i/v.

Fig. P2.22

2.23 For the circuit shown in Fig. P2.23, use mesh analysis to find (a) the current, directed down, through the 3-V source, (b) the current, directed to the right, through the 9-V source, and (c) v.

Fig. P2.23

2.24 For the circuit shown in Fig. P2.24, use mesh analysis to find (a) the current, directed to the right, through the 12-V source and (b) the current, directed down, through the 6-V source.

Fig. P2.24

2.25 For the circuit shown in Fig. P2.25, use mesh analysis to find (a) the resistance seen by the voltage source and (b) v.

Fig. P2.25

- 2.26 For the circuit given in Fig. P2.25, change the 5- Ω resistor to 6 Ω and repeat Problem 2.25.
- 2.27 Use mesh analysis to find the resistance seen by the current source for the circuit shown in Fig. P2.27.

Fig. P2.27

Fig. P2.28

Fig. P2.29

- **2.28** Use mesh analysis to find v_1 , v_2 , and v_3 for the circuit shown in Fig. P2.28.
- 2.29 Repeat Problem 2.28 for the circuit shown in Fig. P2.29.
- 2.30 Repeat Problem 2.28 for the circuit shown in Fig. P2.6.
- **2.31** Repeat Problem 2.28 for the circuit shown in Fig. P2.5.
- 2.32 Find the resistance seen by the 1-A current source for the circuit shown in Fig. P2.32.
- 2.33 For the circuit given in Fig. P2.32, change the 5- Ω resistor to 3 Ω and repeat Problem 2.32.

Fig. P2.32

- 2.34 Find the resistance seen by the 1-V voltage source for the circuit shown in Fig. P2.34.
- 2.35 For the circuit given in Fig. P2.34, change the $10\text{-}\Omega$ resistor to $8\,\Omega$ and repeat Problem 2.34.
- 2.36 The simple transistor amplifier in Fig. P2.36 incorporates an alternative h-parameter model of a transistor. Use mesh analysis to find (a) the voltage gain v_2/v_1 and (b) the resistance $R_{eq} = v_1/i_1$.
- 2.37 For the transistor amplifier circuit in Fig. P2.37, use mesh analysis to find (a) the voltage gain v_2/v_1 and (b) the resistance $R_1 = v_1/i_1$
- tance $R_{eq} = v_1/i_e$. **2.38** For the transistor amplifier circuit shown in Fig. P2.38, use mesh analysis to find (a) the voltage gain v_2/v_1 and (b) the resistance $R_{eq} = v_1/i_b$.
- 2.39 For the circuit shown in Fig. P2.39, find the loop currents for the tree corresponding to the 1- Ω , 2- Ω , 3- Ω , and 4- Ω resistors. Determine the resistance seen by the 3-V source.

Fig. P2

Fig. P2.

Fig. P2.3

Fig. P2.3

Fin P2