LE 333 Homewart 1

$$
\begin{aligned}
& |-2 \quad A \cdot \bar{A}-3-12-2=-17=|A|| \bar{P} \mid \operatorname{coc} \theta \\
& |A|=\sqrt{1+9+4}=\sqrt{14}=317417 \\
& |B|=\sqrt{9+\mid A+1}=\sqrt{26}=5.099 \\
& \therefore \cos =\frac{17}{\sqrt{174}+4 \times 008}=0.891 \text { or } \theta \simeq 270
\end{aligned}
$$

parts b), c), and d) are on page 3

$$
1-23 \text { 0 } 29 \text { max } \bar{F}+F_{E}+F_{J}=0
$$

(1)

$$
\begin{aligned}
& \text { or cot } \frac{\alpha}{2}=\left[\frac{\left.0.2 \times 980\left(4 \pi / w^{2}\right) \times 10^{-5}\right]}{Q^{2}}\right] \\
& Q^{2}=\frac{0.2 \times 988\left(4 \times 1 \times \times \frac{1}{2 \times 8} \times 10^{-9} \times 10^{-5}\right] W^{2}}{21415}
\end{aligned}
$$

$$
x=45^{\circ}
$$

bot $u\left(2 \times 1 \times \sin \left(\frac{45}{\sigma}\right)=0.7600^{2} 7\right.$

$$
\operatorname{so} Q^{2}=\frac{0,2 \times 980 \times 10^{-14} \times 0,5867}{9 \times 2.410}=5,28 \times 10^{-14}
$$

$$
\text { or } 9=230 \times 10^{-7}
$$

b) int $\frac{\alpha}{2}=\frac{0,2 \times 980 \times 3 \times 5 \times \frac{1}{8880^{-12}} \times 10^{-9} \times 10^{-5} \times\left(4.23-4 \mathrm{sin}^{2} \frac{\alpha}{2}\right.}{9 \times 05^{2} \times 10^{-12}}$
bot $\omega=2 \sin \frac{\alpha}{2}$

$$
\begin{gathered}
\text { or } \frac{\cos \frac{\alpha}{2}}{\sin \frac{\alpha}{2}}=348.444 \times \frac{10^{-14}}{10^{-12}}=3.4844 \\
\alpha=76.71 \Delta
\end{gathered}
$$

$$
76.71116
$$

$$
\begin{aligned}
& 1-25-\bar{F}=q(\bar{A}+\bar{b}+\bar{E})=q\left[g_{g}\left(3 a_{x}-\overline{a_{y}}+2 \bar{a}_{z}\right) \times 80\left(\bar{\sigma}_{\pi}+2 \bar{y}-4 / 4\right.\right. \\
& +E]=0 \\
& \text { or } x_{0} B_{0}\left[6 a_{2}+12 a_{2}+\bar{q}_{2}+x \bar{r}_{x}+2 \bar{a}_{2}-2 a_{m}\right]+E=0 \\
& \left.\operatorname{sob}_{0}\left[14 \overline{a_{z}}+7 a_{z}\right]=-E\right]-\infty
\end{aligned}
$$

$1-26$ (z diection) mannotic tarce in $-x$ diretras

$$
1-30 F=q F=\frac{d x}{d} \Rightarrow d x=\frac{2}{m} F a t
$$

($t=0 \quad x=a \quad \therefore \quad x \not A)=\frac{q}{m} E t \Rightarrow b x=\frac{q}{m} E t d t$ integration: $x=\frac{2}{m} E \frac{t^{2}}{2} \quad$ on $x=0 \quad t=0$
-0 of transit through accelocting megeis is:

$$
t=\sqrt{\frac{2 n x}{2 E}} \text { bot } E=\frac{V}{x}
$$

so $t=\sqrt{\frac{2 n x^{2}}{2 V}}$ and x oxif $=\frac{q^{2} v x}{m x} \sqrt{\frac{2 m}{2^{2}}}$
g or $x=\sqrt{\frac{q^{v}}{m}} \& \square$
5) circle (costant fore normat to velocity)
\bar{P} \& frld dase no change nagnitute of nè

EE 333
Homework 1
progiation of \bar{A} ando $\bar{B}=\bar{A} \cdot \bar{B} / \mid \overline{1 B 1}$

$$
=\frac{17}{\sqrt{26}}=3.33^{4}
$$

or $\bar{A} \times \bar{B}=-5 \overline{\sigma_{x}}-5 \overline{z_{2}},-5 \overline{x_{z}}$
uni \angle vortor $=\frac{-\sqrt{3}+5 \sigma_{2}+\sqrt{2}}{\sqrt{25}}=-\frac{1}{\sqrt{3}}\left(\overline{\sigma_{1}}+\overline{a_{2}}+\bar{\sigma}_{z}\right)$
d) $\bar{A} \cdot \bar{a}_{H}=A_{r} \quad$ compuat of \bar{A} in r direction
$A_{r}=A_{r} \sin \theta \cos \phi+A_{1} \sin \theta \sin \phi+A_{2} \cos \theta$
$6 \bar{A} \cdot \bar{q}_{r}=\sin \theta \cos \phi-3 \sin \theta \sin \phi+2 \cos \leq$

EE 333 Homowark 2
$1-48 \quad \rho_{V}=\rho_{0}\left(1-\frac{r^{2}}{a^{2}}\right) \quad r<a$

$$
\rho_{2 \pi}=0 \quad r>0
$$

$\operatorname{far} r<a \int_{\phi=0}^{2 \pi} \int_{\theta=0}^{2 \pi} \epsilon_{0} E_{r} r^{3} \theta d \in d \phi=\int_{\theta=0}^{2 \pi} \int_{r=0}^{\pi} \rho_{0}\left(1-\frac{r^{2}}{a^{2}}\right) r^{2} \sin \theta d r d E$

$$
\begin{aligned}
4 r^{2} \epsilon_{0}^{r} F_{r} & =\operatorname{sp}_{0}^{2}\left[\frac{r^{3}}{3}-\frac{r^{5}}{5 a^{2}}\right] \\
& \therefore E_{r}=\frac{\rho_{0}}{\theta_{0}}\left[\frac{r}{3}-\frac{r^{3}}{a^{2}}\right]
\end{aligned}
$$

for $r>0$

$$
\begin{aligned}
& 4 \pi r^{2} \theta_{0} E=\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \int_{r=0}^{a} \rho_{0}\left(1-\frac{r^{2}}{a^{2}}\right) r^{2} \min \theta d t d \theta \phi
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } E_{r}=\frac{\rho_{0}}{\epsilon_{G} r^{2}}\left[\frac{a^{3}}{3}-\frac{a^{3}}{5}\right]=\frac{2 \rho_{0} a^{3}}{\delta_{0} r^{2}} \Delta
\end{aligned}
$$

Una Faratag's how

$$
\begin{aligned}
& \delta \bar{E}=d \bar{f}=-\frac{b}{\operatorname{P}} \overline{\mathrm{R}}=\operatorname{einf}_{\text {the }} \text { logund } \\
& \operatorname{enf}^{\text {in }}=-\frac{l}{d t}\left(0,2 \sin 10^{3} \nmid \sigma_{z}-\alpha_{1} 1 \overline{a_{z}}\right) \\
& \mathrm{Em} \text { fin rolts }=-0.02 \times 10^{8} \mathrm{cop} 0^{3} \mathrm{~A}
\end{aligned}
$$

$$
\therefore I=\frac{e_{n} A}{5}=-4 \cos 10^{\circ} \mathrm{t}
$$

EE 333
Homewark 2
(parn 2)
$1-53$

$$
\hat{\theta} \frac{\bar{R}}{R_{0}} \cdot \overrightarrow{e r}=\int \sqrt{V} \cdot \bar{a} \quad \text { for no time }
$$

for $\rho<\sigma .5 \mathrm{~m} \int_{\phi=0}^{2 \pi} \frac{\bar{B}_{\phi}}{\mu_{0}} \bar{q}_{0} \rho \phi \phi \bar{\phi}=\int_{\phi=0}^{2 \pi} \int_{\rho=0}^{\rho} 4,5 \rho^{-2 \rho} \rho d \rho d \phi$

$$
B_{A}=\frac{9 \mu_{0}}{4 \cdot 2 p}\left\{-\frac{2 p}{2}\left[\frac{1}{2}+\frac{1}{40}\right] 4+1\right\}
$$

$$
B_{A}=1125 \times \frac{N_{o}}{\rho}\left\{1-20 e^{-2 p}-e^{-2 p}\right\}
$$

dir $p>0,5 m$

$$
\begin{aligned}
& \frac{1}{M_{0}} 2 \pi \rho R=\int_{\phi=0}^{2 \pi} \int_{\rho-0}^{\frac{1}{2}} 4,3 e^{-2} \rho \rho \text { ppa. } \\
& D_{\phi}=\frac{\mu_{0} 9 \pi}{21_{0}} \int_{0}^{\frac{1}{2}} \rho e^{-2 p} \theta \rho=\frac{9 \mu_{0}}{2 \rho}\left\{e^{-i}\left[-\frac{1}{2}\right]+\frac{1}{4}\right\} \\
& \beta_{\phi}=\frac{9 \mu_{0}}{\beta \rho}\left\{1-2 e^{-1}\right\}=1,125 \mu_{0}(0,2642) \frac{1}{\rho} \\
& B_{\phi}=0.297 \mu \times \frac{1}{\rho}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{q}=\frac{9}{2 p}\left\{e^{-2 p}\left[-\frac{p}{2}-\frac{1}{4}\right]+\frac{1}{4}\right\}
\end{aligned}
$$

(Atonnwert 3)
4.55 $B_{p}=\frac{\text { NaEwestht }}{2 \pi p}$ to $p>a \&$ (from alas notes)
(i') total flux through log $=\int_{0=d}^{d+a} \int_{z=0}^{b} \frac{p e z}{\text { arp }} \in z$ op cut

$$
\text { total flux }=\frac{p_{0} I b}{2 \pi} \ln \frac{d+c}{a} \operatorname{erout}
$$

$V_{z}=\frac{\tau}{\pi r^{2}}$ for $\rho<a$ $v_{z}=-\frac{I}{\pi\left(c^{2}-b^{2}\right)}$ for $b<p<c$ zero everwhere els
 for $a<p<b \quad \frac{2 \pi p D_{0}}{l_{s}}=I \quad$ giving for $b<\rho<c \frac{2 \pi b_{p}}{\rho_{0}}=I\left\{1-\frac{\pi\left(p^{2}-b^{2}\right)}{\pi\left(c^{2}-b^{2}\right)}\right\}=I\left\{\frac{\pi\left(c^{2}-b^{2} c^{2}+b^{2}\right)}{\pi\left(c^{2}-b^{2}\right)}\right\}$

$$
\beta_{\phi}=\frac{\mu_{0} 工}{2 \pi_{p}}\left\{\frac{c^{2}-p^{2}}{c^{2}-b^{2}}\right\}
$$

Lar $p>c \quad B_{\phi}=0<$

सL उア3
Homework 3

$$
\begin{aligned}
& 2-1 \quad 4 \div E_{0}\left[L-\left(\frac{9}{p}\right)^{3}+z \cos \phi\right. \\
& \nabla \phi t=\frac{\partial \psi}{\partial \rho} \bar{q}_{p}+\frac{1}{\rho} \frac{\partial \psi}{\partial \psi} \bar{q}_{p}+\frac{\partial \psi}{\partial z} \bar{q}_{z} \\
& 00^{\circ} \nabla \psi=+E_{0} a^{3} z \cos \phi\left(\frac{1}{\rho^{4}}\right) \bar{\rho}-E_{0}\left[1-\left(\frac{a}{\rho}\right)^{3}\right] z \sin \phi \overline{a_{\rho}} \\
& +F_{0}\left[1-\left(\frac{q}{p}\right)^{\sigma}\right] \cos \bar{\phi} \bar{a}_{z}
\end{aligned}
$$

$2-2$ a) $V \cdot \bar{A}=0$
b) $\nabla \cdot \bar{B}=0$
\qquad c) $r \cdot \bar{c}=\frac{1}{r^{2}} \frac{\partial\left(r^{2}, r\right)}{\partial r}=3$

+ d) $\left.\nabla \bar{D}\right|_{r=3} ^{r^{2}}=\left.\frac{1}{r^{2}} \frac{2}{\partial r}\left(r^{2}-2 r^{2}\right)\right|_{r=3}=\left.\frac{8 r^{3}}{r^{2}}\right|_{r=3}=24$

$$
\text { e) } \nabla \cdot E=3+1-1=3
$$

$$
2-12 \quad \bar{E}=\frac{\rho_{v} r}{3 \epsilon_{0}} a_{r}
$$

for
talc field $\nabla \times \bar{F}=0 ;$ the cart of the aboun is zero bovase it hes only E_{r} which w on ta function on θ or

$$
\nabla_{0} \epsilon_{0} \bar{E}=\rho_{V}=\epsilon_{0}\left\{\frac{1}{r^{2}} \frac{\partial\left(\frac{\rho_{v} r^{3}}{3 \epsilon_{c}}\right)^{3}}{\partial r}\right\}=\epsilon_{0} \frac{3 r^{2} \rho_{v}}{3 \epsilon_{0} r^{2}}=\rho_{V}
$$

$2-14 \quad \bar{B}=\frac{1}{\Gamma^{a}} \sin \phi \cdot \cos ^{2} \theta \overline{Q_{V}}$
static fica??

$$
\nabla \cdot \bar{B}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\sin \phi \cos ^{2} \theta\right)=00_{0}^{J} \nabla \times \frac{\vec{B}}{M_{0}}=\bar{J}
$$

$\operatorname{si} \bar{\top} \frac{1}{\pi r} \frac{1}{r} \cdot \frac{1}{r^{2}} \cos \phi c^{2} \theta \frac{a_{\theta}}{a_{\theta}}+\frac{1}{\nu_{r} r} \cdot \frac{2}{r^{2}} \sin \phi \cos \theta \sin \theta \overline{a \phi}$ $\bar{V}=\frac{1}{M_{0} r^{3}}\left\{\cos \phi \frac{\cos ^{2} \theta}{\sin \theta} \bar{a}_{\theta}+2 \sin \phi \cos \theta \sin \theta \bar{\theta}_{\phi}\right\}$

EE 333 Honework 4

$$
2-26 \quad \frac{1}{E}=50 e^{\frac{\pi}{4}} e^{\prime} \frac{\pi}{3} z
$$

a) $\bar{\xi}_{x}$
b) $\frac{1-\bar{q}_{z}}{\beta=\frac{\pi}{3}: \quad \frac{\pi}{3} \lambda=2 \lambda \text { or } \lambda=6}$
d) $\beta=\omega \sqrt{\rho \sigma_{0}}=\frac{2 \pi \mathcal{L}}{c}=\frac{2 x}{3} \quad \therefore \quad f=\frac{c}{6}=\frac{1}{2} \times 10^{M}$
e) $\frac{\hat{A}}{1 / \frac{v 0}{1201} e^{\gamma^{\frac{\pi}{4}}} e^{-y^{\frac{\pi}{3 z}}} \bar{a}_{z}}$
(f) $E=\operatorname{He}\left\{50 e^{j \frac{\pi}{k}} e^{\left.-j \frac{\pi z}{3} e^{j u t}\right\} \bar{x}}\right.$

$$
E=\sqrt{0} \cos \left(\frac{\pi}{3} z+\frac{\pi}{4}\right) g_{x}
$$

EL $333 \quad$ Honewort 5
止-33 $A=0,15 \cos \left(u t+\frac{2 \pi}{7} z+\frac{\pi}{13}\right) a_{3}$
a) $\beta_{0}=\frac{2 \pi}{7} ;$; $\beta_{0} \lambda=2 \pi$ or $\lambda=7 m \quad \alpha$
also $\beta_{\alpha}=\alpha \pi f / c$ so $\frac{\Delta \pi /}{7}=2 \pi f / c$ or $\left[f=\frac{c}{7}=0.428 \times 1 /\right]$
b) $|\vec{F}|=0,15 \quad|E|=|20 \pi| \vec{H} \mid=56,55$
c) $\bar{E}=56.55 e^{8\left(\frac{8 \pi}{7} z+\frac{\pi}{3}\right)}(-\bar{\xi})$

Special $E=500 e^{-j \beta_{0} z}\left(a_{x}-j \bar{y}\right)$
"a) $\vec{E}=\operatorname{voscoc}\left(\right.$ ut $\left.-\beta_{B} z\right) \bar{a}_{x}+1000 \mathrm{sm}($ at $-\beta z) \bar{y}_{y}$
b) $\hat{H}=\frac{500}{100 \pi} e^{-\left(B_{0} z\right.}\left(\overline{g_{y}}+j \bar{\sigma}_{x}\right)$

CW or right hand circular polarization

EE $333 \quad$ Honnwark 6
$\vec{A}-13 \quad \bar{E}=10 \cos t \overline{a_{z}}, A=10^{-2}$

1) $\overline{v_{c}}=\sigma \bar{E}=0$

Visplocemont $\frac{\partial(\xi E)}{\partial t}=-100 \epsilon_{0} \sin d a_{z}$

$$
-10 F_{\text {totat }}=\overline{0}_{1} / \omega G_{0} \sin \omega A
$$

(b) $f=80 \epsilon_{0}, \sigma=4 \mathrm{~s} / \mathrm{m}, f=10^{8}$.
$\bar{J}_{\text {tot } 1}=10^{-2}\left(\overline{\bar{x}_{0}}+\bar{F}_{d}\right)=10^{-2}\left(40\right.$ cowt $\left.-10 \omega \sigma_{0} \times 80 \sin \omega t\right) \overline{\sigma_{2}}$

$$
\text { "Iotal }=\left[0,4 \text { cosost }-10^{-1} \frac{2 x+10^{8} \times 9^{9} \times 10^{-9}}{38 x} \sin \text { at }\right] \bar{a}_{2}
$$

$$
\begin{aligned}
& \bar{F}_{\text {totat }}=\left[0,4 \cos A-4,44 \times 10^{-2} \sin \omega A\right] \bar{a}_{7} \sigma \\
& F^{-21} \epsilon_{r}=6,3, \mu_{r}=1.98, f=10^{\circ}, \text { assome } \sigma=0
\end{aligned}
$$

$E(\xi t)=100 \mathrm{cos}($ ait $-\beta z) \bar{a}_{x}$
a) $\beta=\omega \sqrt{\mu \mathrm{C}}=\frac{2 \pi \times 10^{9} \times \sqrt{6.3 \times 198^{8}}}{3 \times 10^{8}}=7.397 \times 10^{\circ} \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \lambda=\frac{2 \pi}{\beta}=8.49 \mathrm{~cm} \\
& \text { rphace }^{=} \frac{w}{\beta}=\frac{2 \pi \times 1 \sigma^{9}}{73.97}=0,0849 \times 10^{9} \mathrm{n} / \mathrm{sec}
\end{aligned}
$$

b) $\eta=\sqrt{\frac{\mu}{e}}=120 \pi \sqrt{\frac{-198}{3}}=2 / 1 \Omega$
c) $\bar{H}(z, f)=\frac{0,473}{\frac{\mid B_{2} 1}{7}} \cos (2 \pi x 12 t-73.97 z) \bar{g}_{z} 0$
$3+22 \mathrm{seq}$ water $\sigma=45 / 0, \mu=1, \epsilon_{\mu}=81$

$$
\begin{aligned}
& 100<\left|\frac{\bar{J}_{c}}{\bar{J}_{d}}\right|=\left|\frac{\sigma E}{j v E_{0} E_{r} E}\right|=\frac{0}{2 \pi f E_{0} t_{r}} \\
& \therefore f \leqslant \frac{\sigma}{2 \pi \epsilon_{0} C_{1} \times 100}=\frac{x^{2} \times 36 \times 2}{1010^{-9} \times 2 / \times 10^{2}}=0,888 \times 107 \\
& \text { ef } f \leqslant 8,88 \mathrm{MHZ} \text { } \mathbb{F}
\end{aligned}
$$

3-26 a) $A=24 \mathrm{natta}, \phi=1 \mathrm{rat} / \mathrm{m}$
dectous by $1 / 2$ for each meter haulled

$$
\hat{R} e^{-x^{x .2}}=0,5 \quad \alpha=-\ln 0,5=0,683<
$$

stin doth $\delta=\frac{1}{\alpha}=1144 \mathrm{~m} \propto$

$$
\begin{aligned}
& \beta=\text { phese sift } p e \text { reter }=1 \text { reffm } q \\
& \lambda=\frac{2 M}{\beta}=2 \pi m \\
& \measuredangle
\end{aligned}
$$

EL 333 Homework 7
$3+1 \quad E=3 z^{2}$ ax $10^{8} t \bar{a}_{x}, E_{H}=2.06$
a) $\bar{D}=\epsilon_{0} E+\bar{p}=c_{r} \epsilon_{0} \bar{E}$

+ $\circ \bar{p}=\epsilon_{0} F\left(\epsilon_{r}-1\right)=\frac{3 \times 156 \times 10^{-9}}{36 \pi} \bar{E}^{2} \times \cos 10^{\circ} t \bar{a}$
$\bar{p}=4,138 \times 10^{-1 /} z^{2} z^{2} \cos 10^{\circ}+\bar{x}$
(b) $\rho_{p}=-\nabla \cdot \bar{p}=0 \quad$ Field has only an x company that dor not vary with x ?
c) $\overline{\bar{p}}=\frac{\partial \bar{p}}{\partial t}=-4,138 \times 10^{-3} z_{z}^{2}$ Ami $10 \frac{8}{9 x}$

$$
\begin{aligned}
& \epsilon_{1}=1,5 \epsilon_{0}, \epsilon_{2}=4,0 \epsilon_{0} \\
& \rho \rho=\text { chase } / \text { uni loath } \\
& \rho \bar{D} \bar{d}=\text { Spode }
\end{aligned}
$$

1) use circular cylindrical surface
a) $\prod_{z=0}^{n} \int_{\phi=0}^{\pi} D_{\rho} \rho d \phi d z=\rho_{\rho} L=2 \pi<D_{0} \rho$

$$
\begin{aligned}
& E_{p}=\frac{p_{s}}{3 \epsilon_{0} \pi_{p}} \text { for } a<p<r_{1} \\
& E_{\rho}=\frac{\rho_{p}}{r E_{0} r \rho} \text { for } r_{1}<\rho<r_{2} \\
& \rho_{p}=\epsilon_{0} E\left(\epsilon_{r}-1\right) \quad\left\{\begin{array}{ll}
\frac{p_{s}}{\sigma \pi \rho} & \text { for } \\
\frac{\rho p 3.5}{9 \pi p} & r_{1}<p<r_{2}
\end{array}\right\}
\end{aligned}
$$

$E E 333$
Homseark 7
Cagen 2)
3. 3 continiver: Outtide of cable charge enclaset is zero a : $\bar{D}=\bar{E}=\bar{p}=0$ L
c) $\rho_{p}=-\nabla \cdot \bar{P}=-\frac{1}{2} \frac{d}{d p}\left(\frac{7 p}{p n}\right)=0$

Special Problem:

$$
\text { Cu, } \sigma=5.8 \times 10 \text { mhol }
$$

$$
n=10^{25} \text { electan } / \mathrm{mm}^{3}
$$

4) $\mu=-\frac{e \widetilde{c}}{m} ; \sigma=\frac{n^{2} e_{c}}{m}=-n e \mu e$

$$
\therefore \mu_{0}=\frac{\sigma}{h 0}=\frac{\frac{18}{2 \times 10}}{10^{29} \times 16 \times 10^{-10}}=3625 \times 10^{-3} \theta
$$

b) $A_{v}=10^{29}\left(-16 \times 10^{-19}\right)=-16 \times 10^{10} / \mathrm{cos}^{5}=-16 \mathrm{C} / \operatorname{man}^{3} 2$

$$
\stackrel{O N}{ }=584 / \min ^{2} \mathcal{F}
$$

$E L 333$ Homework 8
$3+1 \quad \quad \vec{v}=\frac{1}{2} \overline{s_{2}}$ for $\rho^{<\theta}$

$$
\begin{equation*}
\bar{F}=\frac{1}{2} p / l\left(-\bar{a}_{z}\right) \quad \text { for } c<p<b \tag{5}
\end{equation*}
$$

$$
H^{H} 2 \pi_{p} H_{p}=\int_{t=0}^{a \int_{p} \rho_{0}} \frac{1}{\alpha} \bar{a}_{2}-\rho d d \rho \sigma_{2}=\frac{\pi_{\rho}}{2} \text { for } \rho^{2}<a
$$

$$
\operatorname{sen} H_{1}=\frac{p_{t}^{2}}{t} \text { Fa } \rho<0
$$

b) for $\rho<a \quad B_{\phi_{1}}=\mu_{1} \mu_{0} \times p_{4}^{p_{4}}$
for $\left.a<p<6 \quad B_{\phi_{2}}=\mu_{2} \mu\left[\frac{5}{12} \cdot \frac{a^{2}}{\rho}-\rho_{a}^{2}\right]\right\}$
\#
\#) $\bar{H}=x_{n} \bar{H}$ an $x_{m}=\mu_{1}-1$
d) He $\left(0=\frac{?}{=} H_{2}(0-0)\right.$

$$
\begin{aligned}
& p=a=A 1 / 6-9) \\
& \frac{9}{4}=a\left[\frac{5}{12}-\frac{1}{6}\right]=a\left[\frac{3}{12}\right]=\frac{9}{4}: P A
\end{aligned}
$$

$$
\begin{aligned}
& \text { " } 50 M_{a}=\left(M_{r}-1\right) H_{2} a_{p} \quad a<p<b \\
& \frac{\pi}{\pi_{2}-1}{\overline{m_{2}}}_{2}=\nabla \times \mu_{2}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[-\rho_{6 a}\right] \bar{\sigma}_{z}=\frac{3 p}{6 a} \bar{T}_{z} \\
& \pi_{1}-1{ }_{50} F_{m_{2}}=\left[\mu_{2}-1\right)\left[-\frac{\rho}{2 a}\right] \bar{a}_{z}
\end{aligned}
$$

FFB33 Homewat of
pormor)

taxar $B_{n}=D_{n,}$
bat Htm, Htang2 vo $\quad t a \rho_{2}=\frac{N_{2}}{V_{2}}$ tand

$$
\theta=\tan ^{-1}\left[\frac{N}{2} \tan \theta\right]
$$

\cdots	02	0,
\cdots	0	0
\cdots	0	00
\cdots	850	57×10^{-30}
\cdots	89	0.30
\cdots	0.300	
.270		

$$
\begin{aligned}
& \text { Free spoce } \\
& \text { no attenvation } \\
& \text { Ev It in phare (} n \text { red) } \\
& \text { rph } \simeq 3 \times 10^{\text {A m }} / \mathrm{sec} \\
& P_{\text {are }}=\frac{E_{n} x^{2}}{2 / 0}
\end{aligned}
$$

Cualuctite Atratín a Henuation
$\hat{n} \overline{E+A}$ ont of phemo -丷́l reducat $P_{a v}=\frac{\sum 巨_{n}^{2} e^{2}-2 x z}{2 / n \mid} \operatorname{coc} \theta$ where $\hat{n}=\mid \vec{n} / e^{\prime} \theta$
b) $\mu=1, \epsilon_{r}=79, \sigma=3 \mathrm{~m}, E(?=0)=10 \mathrm{k}$
i) $f=2 \times 10^{4}, \frac{\sigma}{\omega_{E}}=\frac{3 \times 3612}{2 \times 1 \times 2 \times 4 \times 79 \times 10^{-9}}=0,34107 \times 10^{5}$ conduction currest dommatr (goed caductor) \&-

$$
\begin{aligned}
& \text { so } \alpha=\beta=\frac{\text { whr }}{\sqrt{\alpha}} \sqrt{\frac{\sigma}{\alpha}}=\frac{4 \pi \times 0^{4} \sqrt{79}}{\sqrt{2 \times 3 \times 10^{\alpha}}} \sqrt{6,34 n 7 \times 0^{2}} \\
& \alpha=4 \operatorname{tg} 67.7 \times 10^{-4}=0.48677 \\
& \text { Hoe } e^{z \alpha}=10^{-5} ; e^{-\alpha z}=10^{-6} \\
& -x z=-13,8155 \quad \therefore z=\frac{138150}{0,48677}=\sqrt{28,38 \mathrm{~m} \sigma} \\
& \text { it) } \frac{c}{\text { unc }}=\frac{3 \times 3 \times 2 x}{2 \times 2 \times 10^{10} \times 10^{9} \times 79}=0.34171 \times 10^{-1} \\
& \therefore \alpha=\frac{2 \pi \sqrt{29}}{\sqrt{3}+100^{8}}[0,024]=0,632 \times 10^{2}=63.2 \\
& z=\frac{13,8180}{69} 2=0.218 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { EE } 333 \text { (pmework } 9 \text { (page 2) } \\
& 3-24 c)\left(2 f=2 x d^{4} ; \hat{\eta}=\sqrt{\frac{\beta}{e\left(1-j \cdot \frac{\sigma}{j e}\right)}}\right. \\
& \text { onty }=120 \pi \sqrt{\frac{1}{79(-90,34177 \times 105)}}=0,229 \sqrt{f}=0,229 l^{2} \frac{\pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } f=2 \times 10^{\circ} \quad \hat{\eta}=120 \pi \sqrt{\frac{1}{79(1-10034177)}} \\
& \hat{\eta}=120 \pi \sqrt{\frac{1}{79 \times 1600 e y^{11957^{\circ}}}}=42.4 e^{2^{009790^{\circ}}} \\
& \text { 5o } \operatorname{Pave}=\frac{10^{-10}}{2 \times 4124} \cos (0,978)=11799 \times 10^{-12 \mathrm{~W} / \mathrm{m} 2} \\
& 3-34 P_{\text {aps }}=10 \times 10^{-3} \mathrm{~W} / \mathrm{cn}^{2} \times \frac{10^{4} \mathrm{~cm}^{2}}{n^{2}}=10^{2} \mathrm{w} / \mathrm{m}^{2} \\
& \text { H: } \frac{1}{2} E_{m}^{2}\left(\frac{1}{10}\right)<00^{\circ}=10^{2} \\
& F_{m} Q=2 \times 120 \pi 7 \times 10^{2}=7,53 \times 10^{4} \\
& \text { or } F_{m} \cong 275 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

$5-1 \quad \frac{7}{2}=2 m$ but $\lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{N / \sqrt{6}}=\frac{e}{f}$

$$
\because f=\frac{c}{x}=\frac{3 \times 10^{8}}{2}=115 \times 10^{\alpha} \mathrm{Hz}
$$

$5-4 \quad f=8 \times 10^{8} ; 7 / 2=6.25 \times 10^{-2} \mathrm{~m}$

$$
\left.\begin{array}{l}
\text { a) } c=\frac{3 \times 10^{8}}{1 \sigma_{r}}=\lambda f ; \epsilon_{r}=\left(\frac{3 \times 10}{120} 15 \times 10^{-2} \times 8 \times 108\right.
\end{array}\right)^{2}
$$

b) $H=0$ @ $z=-7 / x=-3,125 x 0-2$
c) $H=\frac{2 E_{m}}{7}$ cap z coat

$$
\begin{aligned}
& H=8.5 \times 0.309 \mathrm{cent}=1.08 \operatorname{cosec} t \mathrm{Al} \mathrm{H} \mathrm{~L}
\end{aligned}
$$

EE 303 (pamount 10 (pap2)
H$=6$ b) $\hat{E_{m}}(0)=\frac{210}{3}=83,33$
c) $E_{i_{2}}\left(0^{2}\right)=\hat{P}(a)=E_{n_{1}}^{+}=\frac{2 \times 1 \times 250}{1+\frac{4}{2}}=\frac{4}{3} \times 250=3333,-4$
d d) $\hat{H}_{n} x=\frac{3393}{377}=0,884$
$(t / 0 a) \quad \sigma_{r}=49, \mu=110, \sigma=0$ radams
"thickers" $7 / 2$ for ne esflection

$$
\begin{aligned}
& F=10^{10} / z \\
& \lambda=\frac{2 \pi}{\beta}=\frac{2 \times}{2 / \sqrt{01}}=\frac{3 \times 10^{8}}{10^{10} \sqrt{4.9}}=1,355 \times 10^{-2} \\
& \lambda / 2 / 2 \text { thichnos }=0.679 \times 10^{-2} \mathrm{~m}=0.678 \mathrm{~cm} \ll
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\operatorname{si\theta } \theta_{t}}{\sin \left(\frac{\theta}{\alpha}\right)}=\frac{1}{H_{1}} \\
& \sin \theta_{c}=\frac{1 / 2}{1_{1}} \\
& \sin (\theta)=\pi \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& 9 \\
& j \theta=20^{\circ}-\theta \\
& \frac{1}{1} \sqrt{6} \sqrt{1-\left(\frac{n_{2}}{n_{1}}\right)^{2}} \\
& \text { so } \sin \left(\frac{\theta}{\alpha}\right)=r_{1} \sqrt{1-\left(\frac{n_{2}}{n_{1}}\right)^{2}} \\
& r_{r_{1} /_{1}} \quad \text { or } \sin \left(\frac{\theta}{2}\right)=\sqrt{n_{1}^{2}-n_{2}^{2}} \\
& \because \sin \left(\frac{\theta}{2}\right)=0.242, \theta=28^{\circ}
\end{aligned}
$$

EA 333

Homewark II

Fuostion $6=8$
wo have the proper magnitvete and direatre
l.e. $\bar{\beta} \times \bar{E}$ is I \bar{E} and directet n Htrat

ExH is in the divecton of \bar{n} (The drastrin of is proporetion

$$
\begin{aligned}
& \sin \theta_{1}=\sin \theta_{\beta} \sqrt{\epsilon_{0}}=\frac{1}{\sqrt{1+{\theta_{e}}_{e}^{e}}} \\
& \text { or tan } \left.\theta_{2}=\sqrt{\frac{\epsilon_{0}}{\epsilon}} \right\rvert\,
\end{aligned}
$$

θ_{a} is the Brewster L at z ad:

EE 333 Hawrock II (pagand)

$$
\begin{aligned}
& G-19 \quad \frac{\sin \theta_{1}}{\sin \theta_{1}}=\sqrt{\frac{\theta_{2}}{\theta_{1}}}=\frac{n_{2}}{n_{1}}, n_{1}=1, n_{2}=1,5+\frac{0_{1}+\pi 0^{-14}}{\lambda^{2}} \\
& \sin \theta=\frac{1}{n_{2}} \sin , \quad \text { of } \theta ;=30^{\circ} \text { so } \theta=\sin ^{-1}\left(\frac{1}{2 n_{2}}\right)
\end{aligned}
$$

$H-Q$ P tolal chaugA $P\left(\rho_{l}=\frac{Q}{2 \pi a}\right)$

$$
\begin{aligned}
& \text { a) } \Phi=\int_{\phi=0}^{2 \pi} \frac{d Q}{4 \pi x}=\int_{\phi=0}^{2 \pi} \frac{Q 4 d \phi}{\pi \pi e} \sqrt{a^{2+z^{2}}}=\underbrace{4 \pi \sqrt{a^{2}+z^{2}}}_{4} \\
& \text { b) } \bar{E}=-\nabla \bar{\Phi}=-\frac{\partial \Phi}{\partial z} a_{z}=\frac{2 Q z}{\delta \pi /\left(a^{2}+z^{2}\right)^{3 / 2}} \overline{a_{z}} \\
& c)^{+} d E_{z}=\frac{Q Q \cos \theta}{4 \pi \epsilon R^{2}}=\frac{q Q d \phi}{2 \pi \omega}\left(a^{2}+z^{\alpha}\right)^{3} / 24 \pi \epsilon \\
& \left.E_{z}=\int_{\phi=0}^{2 \pi} d E_{z}=2 \pi d E_{z}=\frac{Q z}{4 \pi\left(a^{2}+z^{2}\right)^{3 / 2}}\right]_{0}^{2}
\end{aligned}
$$

EE 333
Homewark 12

$I(n)=\frac{Q}{4 m R} \quad \therefore \quad W=\frac{1}{2} \frac{Q}{2 \pi}-Q=\frac{Q^{2}}{2 \pi R R}$
$4-8 a=W=\frac{1}{2} \int p V E d=\frac{V}{2} \int_{p} d=\frac{Q V}{2} \leftarrow$
$\frac{+\sqrt{4}}{\square=}$
b) $V=\frac{Q}{C} \therefore \quad \therefore \quad$ (ran $\quad W=\frac{Q^{2}}{2 c}$
c) $c=\frac{e A}{d}$ dis incrount by a fictar of 3 so C deccean by a tactaref 3 a is cantont vo fram b) We mereaide by a factor of o
 or for this problen $\left.\Phi=f_{f}\right)$
a) $\nabla^{2} \Phi=\frac{1}{p^{2}} \frac{\partial^{2} \Phi}{2 \phi^{2}}=0 ; \quad \Phi=C_{1} \phi+C_{2}$

$$
D=c_{1} \phi_{1}+C_{2} ; 100=c_{1} \phi_{2}+c_{2}=c_{1} \phi_{2}=c t_{1}
$$

$$
\text { so } C_{1}=\frac{100}{k_{k}-t_{1}} \text { and } C_{2}=-C_{1} \phi_{1}=\frac{-10 t_{2}}{t_{2}-t}
$$

$$
\phi^{n} d \Phi=\frac{100}{k_{1}-q_{2}} \phi-\frac{100}{t_{2} t_{1}} \phi_{1}=\frac{100}{t_{1} t_{2}\left(\phi-\phi_{1}\right)}
$$

Homework 12 (page 2)
$4-9$ b) $E=-\nabla \bar{F}=-\frac{1}{\rho} \frac{\partial F}{\partial \phi}$
of $\bar{E}=-\frac{700}{\phi_{2}}-\frac{1}{\rho} q_{p}$
C) $\rho_{0}=\bar{n} \cdot \bar{D} \quad ; \bar{D}=E \bar{E}$
for plato a $f=f_{1}$ tie gev:

$$
\rho_{s}=\bar{q}_{\phi} \cdot \frac{e 100}{\phi_{1}-t_{2}} \cdot \frac{1}{p} \bar{q}_{p}=\frac{e, 100}{\left.\rho_{1}, \phi_{2}\right)}
$$

for plato $\alpha=\phi_{2}$

$$
\rho_{s}=-q_{\phi} \cdot \frac{\epsilon 100}{q_{2}-\phi_{1}} \cdot \frac{1}{\rho} \bar{q}_{p}=\frac{E 100}{\rho\left(A_{2}-\theta_{1}\right)}
$$

सE 333
Honcwark 13

stoles Zheowen

$\therefore b_{z} f_{0} \rho<a=\mu N z$
anly ${ }^{\text {B2 }}$

$$
\therefore \quad \beta=\nabla+\bar{A}=\frac{1}{p}\left[\frac{\partial}{\partial p}\left(\varphi_{\phi}\right)-\frac{\partial A_{\phi}^{\prime}}{\partial \phi}\right]_{\overline{q_{z}}}=\frac{1}{p} \frac{\phi}{\phi 0}\left(\rho A_{p}\right)^{\overline{\alpha_{z}}}
$$

\therefore anty A anly hal $a \neq$ camponent,
(fow part a) wing a corcellar curtour we have:

$$
\rho^{<a} \int_{k=0}^{2 \pi} A \rho d \phi=\int_{\phi=0}^{8 \pi} \int_{\rho=0}^{p} N I \rho^{\phi \phi} \phi \rho=2 \pi \mu N \sum_{2}^{2}
$$

$B_{z}=0$ for $\rho>a$ giving $x, \sin =2$

$$
\text { or } \frac{A_{\phi}=\frac{\mu N \Sigma_{a}^{2}}{g \theta}}{q Q}
$$

$429 \quad B=1 \mathrm{~W} / \mathrm{m}^{2}: H \cong 0,060$ in iron L4 is the same in the gap and in the nagnote notrial

$$
\begin{aligned}
& \therefore H_{T p}=\frac{\theta}{\mu_{0}} \\
& X I=f \pi \bar{X}=0,0005 \times 0,4+\frac{6 \times 10^{-4}}{401 \times 0^{-7}}=0,06+0,398 \times 0^{3} \\
& \text { on } N I \equiv 3984 \text { mpere Tomm }
\end{aligned}
$$

LE 333

(page 2)

b.) $\overline{\bar{G}}=\frac{\mathcal{H}_{0} I}{2 \pi x}+\frac{\mu_{0} I}{2 \pi(d-x)}$
atwen

$$
\begin{aligned}
& \text { or } x=\frac{\operatorname{lng} I}{\frac{\ln }{\pi}}\left[\ln \left(\frac{d-a}{a}\right)\right]+\frac{2 \pi}{d \pi} \int_{a}^{d-a} \frac{d x}{d-x} \\
& \text { let } y=d x \\
& x=\frac{\mu_{0} I l}{\alpha T} \ln \left(\frac{d \rightarrow}{a}\right)+\frac{\mu_{0} I l}{2 \pi} \int_{d-a}^{a} \\
& x=\frac{\mu_{0} I f}{2 n} \ln \left(\frac{d a}{a}\right)-\frac{t_{0} I f}{2 x} \ln \left(\frac{a}{d-a}\right)=\frac{\mu I f}{\pi} \ln \left(\frac{d a}{a}\right)- \\
& \alpha=\frac{\lambda}{I}=\frac{\alpha g}{\pi} \ln \left(\frac{\alpha-a}{a}\right) \approx \frac{L_{0} d}{\pi} \ln \left(\frac{d}{a}\right)<
\end{aligned}
$$

Lo tength $P=$

$$
\text { fo } \alpha \gg a
$$

$$
\text { Energy bacity }=\frac{1}{2} \mu H^{2}
$$

\therefore cusgy stard in gapsi:

$$
W_{n}=\frac{1}{n} H_{e} H^{2}\left(Q_{n} x\right)
$$

π.
two geps

$$
F_{\pi}=\frac{e^{U N}}{2 x}=A_{0} s H^{2} \text { (Newtas) }
$$

Iff ue pick ouk kroth h to welvte the oop and calcutate the megnotic onoqy dane oves thin length we obterin:

$$
\begin{aligned}
& W_{w}=\pi a^{2} z\left(\frac{1}{2} \mu_{0} \mu_{p}^{2} N^{2} z^{2}\right)+\pi a^{2}(\lambda-z)\left(\frac{1}{2} \mu_{0} f N^{3 x^{2}}\right) \\
& \left.U_{n}=\frac{\pi a^{2} x^{2} t^{2}}{2} \sum_{2} \mu_{x^{2}}^{2}+(\alpha-z)_{4} \mu_{1}\right] \\
& \left.W_{n}=\frac{\pi r^{2} N^{2} \Sigma_{r} \mu_{r} \mu_{0}\left[z \mu_{1}+(L-z)\right]}{2}\right]
\end{aligned}
$$

