Triggering Device for Acoustical Monitoring of Lightning Team: Kalyn Jones, Matthew Scharmer, Ryan Steinbach

Acoustic research of thunderstorms in the Magdalena Mountains of New Mexico is currently being performed by Langmuir Laboratories. Continuous recording of audio-range information results in large quantities of data which must be stored and processed. The purpose of this project is to design, fabricate, and test a triggering systems, one analog and one digital, will be implemented. Each system will create a pulse in the event of lightning. These pulses may be used to start audio data storage in the currently implemented data logger system.

Background

New Mexico Tech's Lightning Mapping Array (LMA) measures lightning propagation.

Objective

Research, design, and test a triggering device to optimize an existing audio recording system.

Triggering system should facilitate data storage only in the case of a lightning event.

Implement post-processing software to extract valid thunder data from continuously recorded data.

Design Specifications

The triggering system should meet and maintain the following system requirements:

- Cost < \$1000
- Powered by 12V DC @ 100mA
- Electrically isolated from data logger system
- Able to detect positive and negative lightning events

References Figure 1 Courtesy of: http://www.crondallweather.co.uk/lightning.html#.UWHzPJNInW8

Abstract

Design Approach

A slow antenna detects electric field on Earth's surface. Large changes in surface fields indicate lightning events. Selected two feasible design options for detection of lightning field changes.

Design 1 – Analog Threshold Detector

Figure 2. Analog Threshold Detector Block Diagram

Design 2 – Digital Consecutive Voltage Differential Detector

Figure 3. Digital Consecutive Voltage Differential Detector Block Diagram

Both produce a positive square pulse output at data logger logic levels in the event of a lightning discharge.

Design Team

Lightning Triggering Design Team (from left): Matthew Scharmer, Kalyn Jones, Ryan Steinbach

Analog Triggering System

Figure 4. System PCB

Analog triggering system creates 1.0 millisecond positive trigger pulse when input exceeds the positive and negative thresholds.

Tasks Completed

Future Work

- Field testing

Prototype Cost

- Design/testing Cost \$340.69

Results

Figure 5. Testing Lab

Figure 6. Positive Pulse Generation at Threshold Crossing

Project Status

Analog system design, integration and testing Post-processing software prototype

Digital system design, integration, and testing

Post-processing implementation and testing

Cost to rebuild prototype - \$160.17

<u>Acknowledgements</u> Dr. Rene Arechiga – Customer