EE 231

Exam 1 September 24, 2008

Name:

No calculators allowed. Show all work. Partial credit will be given. No credit will be given if an answer appears with no supporting work.

- 1. You are tasked with designing a digital thermometer, which will display temperatures from -60° F to $+140^{\circ}$ F. (The system displays the temperature to the nearest degree, so you will not need to display fractions of a degree.) The numbers will be stored in a register in signed 2's complement form. What is the minumum number of bits your register will need to hold numbers from -60 to +140? Explain your reasoning.
- 2. Convert the following decimal number to hexadecimal. You only need to keep two digits to the right of the decimal point:

 $(73.28)_{10}$

- 3. For this problem, assume all numbers are held in 8-bit registers in a digital system, and the numbers are repesented in 2's complement form.
 - (a) Convert $(+87)_{10}$ to a 2's complement 8-bit hex number.
 - (b) Convert $(-95)_{10}$ to a 2's complement 8-bit hex number.
 - (c) Use the results from (a) and (b) to perform the following operation using 2's complements: $(+87)_{10} (-95)_{10}$
 - (d) Convert the answer to of Part (c) to its decimal equivalent.

- 4. Use Boolean algebra to simplify the following expressions to a minumum number of literals:
 - (a) (xy + yz' + x'z)(x + z)
 - (b) (x'y'+z)'+z+xy+wz

5. Consider the following truth table:

x	y	z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- Write the function F as a sum of minterms.
- Use Boolean algebra to reduce the expression to a minumum sum of products.
- Write the function F as a product of maxterms.