EE 231 – Homework 5 Due October 1, 2010

- 1. For the circuit shown in Fig. 4.26 (page 155 of the text),
 - (a) Write the Boolean function for the outputs in terms of the input variables.
 - (b) If the circuit is listed in a truth table, how many rows would there be in the table?
 - (c) Write a Verilog dataflow model for the circuit.
- 2. A majority circuit is a circuit with an odd number of inputs whose output is a 1 if and only if a majority of its inputs are 1.
 - (a) Find the truth table for a three-input majority circuit.
 - (b) From the truth table, find the Boolean equation for the circuit.
 - (c) Write a Verilog dataflow model of the circuit.
- 3. Problem 4.8. Treat this as a 4-input, 4-output combinational circuit, find the truth table, and use Karnaugh maps to simplify.
- 4. (a) Design a full subtractor circuit with three inputs x, y, B_{in} , and two outputs D and B_{out} . The circuit subtracts $x y B_{in}$. B_{out} is 0 if no borroow is needed to complete the subtraction, and 1 if a borrow is needed. Find the truth table, and simplify the equations for D and B_{out} using Karnaugh maps.
 - (b) Draw a block diagram showing how four full subtractors can be used to implement a 4-bit subtraction.
 - (c) Write a Verilog dataflow model to implement the circuit of Part (b).
- 5. (a) The adder-subtractor circuit of Fig. 4.13 has the following values for mode input M and data inputs A and B:

	Μ	А	В
(a)	0	0011	0101
(b)	0	1101	1101
(c)	1	0100	0011
(d)	1	0000	0001

In each case determine the values of the four SUM outputs, the carry C, and overflow V.

- (b) Using the conditional operator (?:), write a Verilog dataflow description of the four-bit adder-subtractor of Fig. 4.13.
- 6. For the circuit shown in Fig. 4.13 of the text, verify that the V output bit is correct for the addition operation. That is, show that (a) V will be 1 when you add two positive numbers together $(B_3 = 0 \text{ and } A_3 = 0)$ and get a negative number $(S_3 = 1)$, (b) V will be 1 when you add two negative numbers together $(B_3 = 1 \text{ and } A_3 = 1)$ and you get a positive number $(S_3 = 0)$, and (c) the V output will be 0 in all other circumstances (adding two positives and getting a positive, adding two negatives and getting a negative, or adding a positive and a negative number).

7. Assume that inverter gates have a propagation delay of 5 ns and that AND, OR, NAND and NOR gates have a propagation delay of 10 ns. What is the total propagation delay of the four-bit magnitude comparator circuit of Fig. 4.17?