
EE 2010 Fall 2010

EE 231 – Homework 6
Due October 8, 2010

1. Problem 4.16

2. Using a decoder and external gates, design the combinational circuit defined by the following
three Boolean functions:

(a) F1 = x′y′z + xz′

F2 = x′yz′ + xy′

F3 = xyz′ + xy

(b) F1 = (x + y′)z′

F2 = xz + y′z + yz′

F3 = (y + z′)x

3. Implement the following Boolean functions with a multiplexer:

(a) F (w, x, y, z) = Σ(2, 3, 5, 6, 11, 14, 15)

(b) F (w, x, y, z) = Π(3, 10, 11)

4. Write a Verilog dataflow description to implement the Boolean functions of Problem 3.

5. Implement a full adder with two 4x1 multiplexers. Note: the truth table for the full subtractor
is:

x y Cin Cout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 1 0
1 1 1 1 1

6. An 8x1 multiplexer has inputs A, B and C connected to the selection inputs S2, S1, and S0

respectively. The data inputs through I0 through I7 are as follows:

(a) I1 = I2 = I4 = 0; I3 = I5 = 1; I0 = I7 = D; and I6 = D′.

(b) I2 = I3 = 0; I4 = I5 = I7 = 1; I0 = I6 = D; and I1 = D′.

Determine the Boolean function that the multiplexer implements.

7. Problem 4.39. Use a behavioral description to implement the problem. Do not write a gate
level or dataflow description.

8. Problem 4.50.

1



EE 2010 Fall 2010

9. Using a case statement, write an HDL behavioral description of an eight-bit arithmetic-logic
unit (ALU). The ALU needs to implement the 10 functions listed below. The inputs are two
eight-bit numbers A and B, and select inputs S (where S has enough bits to select the ten
functions). The outputs are the eight-bit result R, a zero-bit Z, and a carry bit C. The C
bit is described in the table below. (X means Don’t Care.) The zero bit Z is 1 if all the bits
of the eight-bit result are 0, and is 0 otherwise.

Name Description R C Z
LOAD Load input A A X 1 if R == 0
ADDA Add inputs A + B Carry 1 if R == 0
SUBA Subtract inputs A−B Borrow 1 if R == 0
ANDA AND inputs A&B X 1 if R == 0
ORAA OR inputs A|B X 1 if R == 0
COMA Bitwise Complement input A ∼ A 1 1 if R == 0
INCA Increment input A A + 1 X 1 if R == 0
LSRA Logical Shift Right 0 => R[7] A[0] 1 if R == 0

input A A[7 : 1] => R[6 : 0]
LSLA Logical Shift Left 0 => R[0] A[7] 1 if R == 0

input A A[6 : 0] => R[7 : 1]
ASRA Arithmetic Shift Right A[7] => R[7] A[0] 1 if R == 0

input A A[7 : 1] => R[6 : 0]

2


