
EE 231 Fall 2010

EE 231

Homework 10

Due November 5, 2010

1. Design a synchronous sequential circuit which generates the following sequence. (The se-
quence should repeat itself.)

00000001
00000010
00000001
00000100
00000001
00001000
00000001
00010000
00000001
00100000
00000001
01000000
00000001
10000000
00000001
00000010

(a) Draw a state transition diagram for the circuit.
This is a system with 14 states, which repeats itself:

80

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13
01

02

01

04

01

08

01

10

01

20

01

40

01

1



EE 231 Fall 2010

(b) Write a Verilog program to implement the circuit.

module hw10_p1(input clk, reset, output reg [7:0] count);

reg [3:0] state;

always @(posedge clk negedge reset)
if (~reset) state <= 4’h0;
else case (state)

4’d0: state <= 4’d1;
4’d1: state <= 4’d2;
4’d2: state <= 4’d3;
4’d3: state <= 4’d4;
4’d4: state <= 4’d5;
4’d5: state <= 4’d6;
4’d6: state <= 4’d7;
4’d7: state <= 4’d8;
4’d8: state <= 4’d9;
4’d9: state <= 4’d10;
4’d10: state <= 4’d11;
4’d11: state <= 4’d12;
4’d12: state <= 4’d13;
4’d13: state <= 4’d0;
default: state <= 4’d0;

endcase

always @(state)
case (state)

4’d0, 4’d2, 4’d4, 4’d6, 4’d8, 4’d10, 4’d12: count = 8’h00;
4’d1: count = 8’h02;
4’d3: count = 8’h04;
4’d5: count = 8’h08;
4’d7: count = 8’h10;
4’d9: count = 8’h20;
4’d11: count = 8’h40;
4’d13: count = 8’h80;

endcase

endmodule

2



EE 231 Fall 2010

2. Design a synchronous sequential circuit which detects the occurrence of at least three 1’s
arriving at the input. The 1’s do not need to arrive in consecutive clock periods. The output
will go high after it sees three 1’s at the input. The output will stay high until the system sees
three consecutive 0’s at the input. When it sees three consecutive 0’s, the circuit should
return to the reset state and start looking for three 1’s.

Here is what the output should look like for typical input:

Input 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 1 1 0
Output 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1

(a) Draw a state transition diagram for the circuit.

0

0

0

1

1

1

no1

one1

two1

one0

two0

three1

0

0

0

0

0

0

1

1

1

1

1
1

reset

3



EE 231 Fall 2010

(b) Write down a state transition table for the circuit.

Current Next
State Input State Output
no1 0 no1 0
no1 1 one1 0
one1 0 one1 0
one1 1 two1 0
two1 0 two1 0
two1 1 three1 0
three1 0 one0 1
three1 1 three1 1
one0 0 two0 1
one0 1 three1 1
two0 0 no1 1
two0 1 three1 1

4



EE 231 Fall 2010

(c) Write a Verilog program to implement the circuit.

module hw10_p2(input clk, reset, x, output reg z);

parameter no1 = 3’h0,
one1 = 3’h1,
two1 = 3’h2,
three1 = 3’h3,
one0 = 3’h4,
two0 = 3’h5;

reg [2:0] state, next_state;

always @(posedge clk, negedge reset)
if (reset == 1’b0) state <= no1;
else state <= next_state;

///* Define next state combinational block */
always @(state, x)

case (state)
no1 : if (x == 1’b0) next_state = no1;

else next_state = one1;
one1: if (x == 1’b0) next_state = one1;

else next_state = two1;
two1: if (x == 1’b0) next_state = two1;

else next_state = three1;
three1: if (x == 1’b0) next_state = one0;

else next_state = three1;
one0: if (x == 1’b0) next_state = two0;

else next_state = three1;
two0: if (x == 1’b0) next_state = no1;

else next_state = three1;
default: state = no1;

endcase
//
/* Define output combinational block */
always @(state)

case (state)
no1,one1,two1: z = 1’b0;
three1,one0,two0: z = 1’b1;
default: z = 1’b0;

endcase

endmodule

5



EE 231 Fall 2010

3. Design a serial 8-bit two’s complementer. Eight bits are fed serially into the circuit, least
significant bit first. The serial output should be the 8-bit two’s complement of the input. The
circuit will transition back to the reset state after each eight-bit packet is processed. Page 11
of the text discusses how you can find the 2’s complement of a number by looking at the bits,
starting with the least significant bit.

(a) Draw a state transition diagram for the circuit.
From the description in the text, you can take a 2’s complement by leaving all the least
significant 0’s and the first 1 alone, then inverting all subsequent bits. The state machine
should have the output equal to the input until the first 1. After that, the output should
be in the inverse of the input. You need to keep track of the number of events, and
whether or not you’ve gotten the first 1:

x/x’

start

b1_ib1_ni

b2_ib2_ni

b3_ib3_ni

b4_ib4_ni

b5_ib5_ni

b6_ib6_ni

b7_ib7_ni

1/1

x/x’

0/0

0/0

0/0

0/0

0/0

1/1

1/1

1/1

x/x’

x/x’

x/x’

x/x’

x/x’

0/0

0/0

x/x

You could also implement this with just three states and a 3-bit counter. Have the
counter keep track of the number of bits. When the number of bits is seven, go back to
the START state:

no_invert

start

1/1

0/0

counter==7/x’

counter < 7/x’

counter==7/x

x==0 & counter<7 / 0

reset

x == 1 & count < 7/1

invert

6



EE 231 Fall 2010

(b) Write a Verilog program to implement the circuit.
Here is a verilog program to implement the second state diagram:

module hw10_p3(input clk, reset, x, output reg z);

parameter START = 2’b0,
NO_INVERT = 2’b1,
INVERT = 2’h1;

reg [1:0] state;
reg [2:0] count;

always @(posedge clock, negedge reset)
if (~reset) begin

state <= START;
count <= 3’b0;

end
else case (state)

START: begin
count <= 3’h1;
if (x == 1’b0) state <= NO_INVERT;
else state <= INVERT;

end
NO_INVERT: begin

count <= count + 1;
if (count == 7) state <= START;
else if (x == 0) state <= NO_INVERT;
else state <= INVERT;

end
INVERT: begin

count <= count + 1;
if (count == 7) state <= START;
else state <= INVERT;

end
default: begin

state <= START;
count <= 3’h0;

end
endcase

always @(*)
case (state)

START: z = x;
NO_INVERT: z = x;
INVERT: z = x’;
default: z = 1’bx;

endcase

endmodule

7



EE 231 Fall 2010

4. Design a synchronous sequential circuit with two inputs x1 and x0 and a single output z. The
circuit detects any violation of the rule i before e except after c. The letter i is represented
by x = 01, the letter e is represented by x = 10, the letter c is represented by x = 11, and all
other letters are represented by x = 00. The output z will go high for one clock cycle if the
circuit sees either an e followed by an i which was not preceded by a c, or if the circuit sees
c i e.

(a) Draw a state transition diagram for the circuit.
The rule is violated if we see c i e or c′ e i. We have the states start, s_c (last character a
c), s_ce (last two characters c e), etc. In the state diagram, c means the input character
is a c, e means the input character is an e, i means the input character is an i, and o
means the input character is anything other than a c, e or i. Here is a start to the state
diagram:

c’e

s_c

s_nc

s_ci

s_cie

0

0

1

0

s_nc_e

s_nc_ei

0

1

reset

c

i

e

i

8



EE 231 Fall 2010

The above state diagram shows only one path to get to the state s_c (the state where
the last letter was c). However, if you are in any of the other states (e.g., state s_nc_e)
and a c comes along, you need to go the state s_c. Similarly, if you are in any state
except s_c and an e comes along, you need to go to the state snce. This gives a lot more
paths to get to the states s_c and s_nc_e:

io

s_c

s_nc

s_ci

s_cie

0

0

1

0

s_nc_e

s_nc_ei

0

1

reset

c

c

c

c

e

i

o

c

e

c

io

eo

e

i

e

io

io

e

9



EE 231 Fall 2010

(b) Write a Verilog program to implement the circuit.

module hw10_p4(input clk, reset, input [1:0] x, output reg err);

parameter lo = 2’b00, // Letter other than c, e, i
li = 2’b01, // Letter i
le = 2’b10, // Letter e
lc = 2’b11; // Letter c

parameter s_nc = 3’h0, // Last character was not one in sequence
s_c = 3’h1, // Last character was a c
s_ci = 3’h2, // Last two chars were c i
s_cie = 3’h3, // Last three chars were c i e
s_nc_e = 3’h4, // Last two chars were o e
s_nc_ei = 3’h5; // Last three chars were o e i

reg [2:0] state;

always @(posedge clock, negedge reset)
if (~reset) state <= s_nc;
else case (state)

start: if x == lc state <= s_c;
else if x == le state <= s_nc_e;
else state <= start;

s_c: if x == lc state <= s_c;
else if x == li state <= s_ci;
else state <= start;

s_ci: if x == lc state <= s_c;
else if x == le state <= s_cie;
else state <= start;

s_nc_e: if x == lc state <= s_c;
else if x == li state <= s_nc_ei;
else if x == le state <= s_nc_e;
else state <= start;

s_nc_ei: if x == lc state <= s_c;
else if x == le state <= s_nc_e;
else state <= start;

default: state <= start;
endcase

always @(state)
case (state)

start, s_c, s_ci, s_nc_e: z = 1’b0;
s_cie, s_nc_ei: z = 1’b1;
default: z = 1’b0;

endcase
endmodule

10


