EE 231 – Homework 6 Due October 7, 2009

1. Problem 4.16

- 2. Using a decoder and external gates, design the combinational circuit defined by the following three Boolean functions:
 - (a) $F_1 = xyz + x'z'$ $F_2 = x'yz + xy'$ $F_3 = xyz' + xy$
 - (b) $F_1 = (x' + y)z$ $F_2 = yz + x'y + y'z$ $F_3 = (x + y')z$
- 3. Implement the following Boolean functions with a multiplexer:
 - (a) $F(w, x, y, z) = \Sigma(1, 3, 6, 8, 10, 15)$
 - (b) $F(w, x, y, z) = \Pi(4, 11, 12)$
- 4. Write a Verilog dataflow description to implement the Boolean functions of Problem 3.
- 5. Implement a full subtractor with two 4x1 multiplexers. Note: the truth table for the full subtractor is:

x	y	B_{in}	B_{out}	Diff
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

- 6. An 8x1 multiplexer has inputs A, B and C connected to the selection inputs S_2 , S_1 , and S_0 respectively. The data inputs through I_0 through I_7 are as follows:
 - (a) $I_1 = I_3 = I_6 = 0; I_2 = I_5 = 1; I_0 = I_7 = D;$ and $I_4 = D'$.
 - (b) $I_2 = I_4 = 0; I_3 = I_6 = I_7 = 1; I_0 = I_5 = D;$ and $I_1 = D'$.

Determine the Boolean function that the multiplexer implements.

- 7. Problem 4.38. Use a dataflow description to implement the truth table of Figure 4.26. Do not write a gate level description.
- 8. Problem 4.43.

9. Using a case statement, write an HDL behavioral description of an eight-bit arithmetic-logic unit (ALU). The ALU needs to implement the 10 functions listed below. The inputs are two eight-bit numbers A and B, and select inputs S (where S has enough bits to select the ten functions). The outputs are the eight-bit result R, a zero-bit Z, and a carry bit C. The C bit is described in the table below. (X means Don't Care.) The zero bit Z is 1 if all the bits of the eight-bit result are 0, and is 0 otherwise.

Name	Description	R	С	Z
LOAD	Load input A	A	Х	1 if $R == 0$
ADDA	Add inputs	A + B	Carry	1 if $R == 0$
SUBA	Subtract inputs	A - B	Borrow	1 if $R == 0$
ANDA	AND inputs	A&B	Х	1 if $R == 0$
ORAA	OR inputs	A B	Х	1 if $R == 0$
COMA	Bitwise Complement input A	$\sim A$	1	1 if $R == 0$
INCA	Increment input A	A+1	Х	1 if $R == 0$
LSRA	Logical Shift Right	$0 \Longrightarrow R[7]$	A[0]	1 if $R == 0$
	input A	A[7:1] => R[6:0]		
LSLA	Logical Shift Left	$0 \Longrightarrow R[0]$	A[7]	1 if $R == 0$
	input A	A[6:0] => R[7:1]		
ASRA	Arithmetic Shift Right	$A[7] \Longrightarrow R[7]$	A[0]	1 if $R == 0$
	input A	A[7:1] => R[6:0]		