## EE 231 - Homework 6

Due October 7, 2009

1. Problem 4.16
2. Using a decoder and external gates, design the combinational circuit defined by the following three Boolean functions:

$$
\begin{aligned}
& \text { (a) } F_{1}=x y z+x^{\prime} z^{\prime} \\
& F_{2}=x^{\prime} y z+x y^{\prime} \\
& F_{3}=x y z^{\prime}+x y \\
& \text { (b) } F_{1}=\left(x^{\prime}+y\right) z \\
& F_{2}=y z+x^{\prime} y+y^{\prime} z \\
& F_{3}=\left(x+y^{\prime}\right) z
\end{aligned}
$$

3. Implement the following Boolean functions with a multiplexer:
(a) $F(w, x, y, z)=\Sigma(1,3,6,8,10,15)$
(b) $F(w, x, y, z)=\Pi(4,11,12)$
4. Write a Verilog dataflow description to implement the Boolean functions of Problem 3.
5. Implement a full subtractor with two 4 x 1 multiplexers. Note: the truth table for the full subtractor is:

| $x$ | $y$ | $B_{\text {in }}$ | $B_{\text {out }}$ | Diff |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

6. An 8 x 1 multiplexer has inputs $A, B$ and $C$ connected to the selection inputs $S_{2}, S_{1}$, and $S_{0}$ respectively. The data inputs through $I_{0}$ through $I_{7}$ are as follows:
(a) $I_{1}=I_{3}=I_{6}=0 ; I_{2}=I_{5}=1 ; I_{0}=I_{7}=D$; and $I_{4}=D^{\prime}$.
(b) $I_{2}=I_{4}=0 ; I_{3}=I_{6}=I_{7}=1 ; I_{0}=I_{5}=D$; and $I_{1}=D^{\prime}$.

Determine the Boolean function that the multiplexer implements.
7. Problem 4.38. Use a dataflow description to implement the truth table of Figure 4.26. Do not write a gate level description.
8. Problem 4.43.
9. Using a case statement, write an HDL behavioral description of an eight-bit arithmetic-logic unit (ALU). The ALU needs to implement the 10 functions listed below. The inputs are two eight-bit numbers $A$ and $B$, and select inputs $S$ (where $S$ has enough bits to select the ten functions). The outputs are the eight-bit result $R$, a zero-bit $Z$, and a carry bit $C$. The $C$ bit is described in the table below. (X means Don't Care.) The zero bit $Z$ is 1 if all the bits of the eight-bit result are 0 , and is 0 otherwise.

| Name | Description | R | C | Z |
| :--- | :--- | :--- | :--- | :--- |
| LOAD | Load input A | $A$ | X | 1 if $R==0$ |
| ADDA | Add inputs | $A+B$ | Carry | 1 if $R==0$ |
| SUBA | Subtract inputs | $A \& B$ | Borrow | 1 if $R==0$ |
| ANDA | AND inputs | $A \mid B$ | X | 1 if $R==0$ |
| ORAA | OR inputs | X | 1 if $R==0$ |  |
| COMA | Bitwise Complement input A | $\sim A$ | 1 | 1 if $R==0$ |
| INCA | Increment input A | $A+1$ | X | 1 if $R==0$ |
| LSRA | Logical Shift Right <br> input A | $0=>R[7]$ | $A[0]$ | 1 if $R==0$ |
| LSLA | Logical Shift Left <br> input A | $0=>R[7: 1]=>R[6: 0]$ | $A[7]$ | 1 if $R==0$ |
|  | $A[6: 0]=>R[7: 1]$ |  |  |  |
| ASRA | Arithmetic Shift Right | $A[7]=>R[7]$ | $A[0]$ | 1 if $R==0$ |
|  | input A | $A[7: 1]=>R[6: 0]$ |  |  |

