EE 231 - Homework 2

Due September 10, 2010

1. Convert the decimal numbers +75 and +32 to 8 -bit hexadecimal numbers, unsing the signed 2's complement representation. Then perform the following operations: (a) $(+75)+(-32)$, (b) $(-75)+(+32)$, (c) $(-75)+(-32)$. Convert the answers back to decimal and verify that they are correct.
$+75_{10}=4 B_{16} \quad+32_{10}=20_{16}$
For use below, we need the 2's complement negative representations:
$-75_{10}=B 5_{16} \quad-32_{10}=E 0_{16}$
(a) $\left(+75_{10}\right)+\left(-32_{10}\right)=4 B_{16}+E 0_{16}=2 B_{16}=+43_{10}$, correct.

Note: $4 B_{16}+E 0_{16}=112 B_{16}$, but you drop the leading 1 because the result must be 8 bits long. The first bit of the 8 -bit result is 0 , so the answer is positive.
(b) $\left(-75_{10}\right)+\left(+32_{10}\right)=B 5_{16}+20_{16}=D 5_{16}=-43_{10}$, correct. The first bit of the eight-bit answer is 1 , so the result is negative; the 2 's complement of $D 5_{16}$ is $2 B_{16}=43_{10}$, so the answer is -43 .
(b) $\left(-75_{10}\right)+\left(-32_{10}\right)=B 5_{16}+E 0_{16}=95_{16}=-107_{10}$, correct. Drop the 9 'th bit; the first bit of the of the 8 -bit answer is 1 , so the result is negative; the 2 's complement of 95_{16} is $6 B_{16}=107_{10}$, so the answer is -107 .
2. Convert the following binary numbers to ASCII code:

10011101100101111011101000001001101110010111110001101001
1100011110111101000001011000110010111000111101000
New Mexico Xech
(I meant to put New Mexico Tech, put wrote it down wrong.)
3. By means of a timing diagram similar to Figure 1.5 , show the signals of the outputs f and g in the figure below as functions of the two inputs a and b. Use all four possible combinations of a and b.

Start with a truth table:

a	b	$g=a b$	$(a \oplus b)^{\prime}$	$f=\left(g+(a \oplus b)^{\prime}\right)^{\prime}$
0	0	0	1	0
0	1	0	0	1
1	0	0	0	1
1	1	1	1	0

Now draw the timing diagram:

4. Use Boolean algebra to prove that the following Boolean equalities are true:
(a) $a^{\prime} b^{\prime}+a b^{\prime}+a^{\prime} b=a^{\prime}+b^{\prime}$
$a^{\prime} b^{\prime}+a b^{\prime}+a^{\prime} b=a^{\prime} b^{\prime}+a^{\prime} b^{\prime}+a^{\prime} b+a b^{\prime}=a^{\prime}\left(b^{\prime}+b\right)+\left(a^{\prime}+a\right) b^{\prime}=a^{\prime}+a b^{\prime}=a^{\prime}+b$
(b) $a b c+b c^{\prime}=b\left(a+c^{\prime}\right)$
$a b c+b c^{\prime}=b\left(a c+c^{\prime}\right)=b\left(c^{\prime}+a\right)\left(c^{\prime}+c\right)=b\left(c^{\prime}+a\right)$
(c) $(a+b)^{\prime} b c=0$
$(a+b)^{\prime} b c=\left(a^{\prime} b^{\prime}\right) b c=a^{\prime}\left(b^{\prime} b\right) c=0$
(d) $\left(a b^{\prime}+a^{\prime} b\right)^{\prime}=a^{\prime} b^{\prime}+a b$
$\left(a b^{\prime}+a^{\prime} b\right)^{\prime}=\left(a b^{\prime}\right)^{\prime}\left(a^{\prime} b\right)^{\prime}=\left(a^{\prime}+b\right)\left(a+b^{\prime}\right)=a a^{\prime}+a^{\prime} b^{\prime}+a b+b b^{\prime}=a^{\prime} b^{\prime}+a b$
(e) $\left[\left(a+b\left(c+a^{\prime}\right)\right]^{\prime}=a^{\prime} b^{\prime}\right.$
$\left[a+b\left(c+a^{\prime}\right)\right]^{\prime}=a^{\prime}\left[b\left(c+a^{\prime}\right)\right]^{\prime}=a^{\prime}\left[b^{\prime}+\left(c+a^{\prime}\right)^{\prime}\right]=a^{\prime}\left[b^{\prime}+a c^{\prime}\right]=a^{\prime} b^{\prime}+a^{\prime} a c^{\prime}=a^{\prime} b^{\prime}$
5. Simplify the following Boolean expressions to a minumum number of literals
(a) $\left[\left(a^{\prime}+b c^{\prime}\right) d^{\prime}\right]^{\prime}=\left(a^{\prime}+b c^{\prime}\right)^{\prime}+d=a\left(b c^{\prime}\right)^{\prime}+d=a\left(b^{\prime}+c\right)+d$ Four literals
(b) $\left\{(a b+c)\left[(a b)^{\prime}+c^{\prime}\right]\right\}^{\prime}=(a b+c)^{\prime}+(a b) c=(a b)^{\prime} c^{\prime}+a b c=\left(a^{\prime}+b^{\prime}\right) c^{\prime}+a b c$ All have four literals
(c) $(x+y)^{\prime}\left(x^{\prime}+y^{\prime}\right)^{\prime}=\left(x^{\prime} y^{\prime}\right)(x y)=0$ No literals
(d) $a b c^{\prime}+a^{\prime} b c^{\prime}+a^{\prime} b^{\prime} c^{\prime}=a b c^{\prime}+a^{\prime} b c^{\prime}+a^{\prime} b c^{\prime}+a^{\prime} b^{\prime} c^{\prime}=\left(a+a^{\prime}\right) b c^{\prime}+a^{\prime} c^{\prime}\left(b+b^{\prime}\right)=b c^{\prime}+a^{\prime} c^{\prime}$

Four literals
6. Draw logic diagrams of the circuits that implement the original and simplified expressions in Problem 5 (c) and (d)
(c)

Simplified

(d)

Simplified

7. Find the complements of the following expressions:
(a) $\left(x+y^{\prime}\right)\left(x^{\prime}+y\right):\left[\left(x+y^{\prime}\right)\left(x^{\prime}+y\right)\right]^{\prime}=\left(x+y^{\prime}\right)^{\prime}+\left(x^{\prime}+y\right)^{\prime}=x^{\prime} y+x y^{\prime}$
(b) $\left(A^{\prime} B+C D\right) E+E^{\prime}$: $\left[\left(A^{\prime} B+C D\right) E+E^{\prime}\right]^{\prime}=\left[\left(A^{\prime} B+C D\right) E\right]^{\prime} E=\left[\left(A^{\prime} B+C D\right)^{\prime}+E^{\prime}\right] E=$ $\left[\left(A^{\prime} B\right)^{\prime}(C D)^{\prime}+E^{\prime}\right] E=\left[\left(A+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)+E^{\prime}\right] E=\left[A C^{\prime}+A D^{\prime}+B^{\prime} C^{\prime}+B^{\prime} D^{\prime}+E^{\prime}\right] E=$ $A C^{\prime} E+A D^{\prime} E+B^{\prime} C^{\prime} E+B^{\prime} D^{\prime} E$
(c) $\left(x^{\prime}+y^{\prime}+z\right)(x+y)\left(x+z^{\prime}\right):\left[\left(x^{\prime}+y^{\prime}+z\right)(x+y)\left(x+z^{\prime}\right)\right]^{\prime}=\left(x^{\prime}+y^{\prime}+z\right)^{\prime}+\left[(x+y)\left(x+z^{\prime}\right)\right]^{\prime}=$ $x y z^{\prime}+(x+y)^{\prime}+\left(x+z^{\prime}\right)^{\prime}=x y z^{\prime}+x^{\prime} y^{\prime}+x^{\prime} z$

