
EE 2010 Fall 2010

EE 231 – Homework 5
Due October 1, 2010

1. For the circuit shown in Fig. 4.26 (page 155 of the text),

(a) Write the Boolean function for the outputs in terms of the input variables.
Y0 = (A0S

′E′)|(B0SE′)
Y1 = (A1S

′E′)|(B1SE′)
Y2 = (A2S

′E′)|(B2SE′)
Y3 = (A3S

′E′)|(B3SE′)

(b) If the circuit is listed in a truth table, how many rows (and columns) would there be in
the table?
There are 10 inputs and 4 outputs, so there will be 210 = 1024 rows, and 14 columns
(one for each of the 10 inputs and 4 outputs). (Homework as posted did not ask for
columns.)

(c) Write a Verilog dataflow model for the circuit.
Here are two ways:

module hw5_p1(output [3:0] Y, input [3:0] A, B, input S, E);

assign Y[0] = (A[0] & ~S & ~E) | (B[0] & ~S & E);
assign Y[1] = (A[1] & ~S & ~E) | (B[1] & ~S & E);
assign Y[2] = (A[2] & ~S & ~E) | (B[2] & ~S & E);
assign Y[3] = (A[3] & ~S & ~E) | (B[3] & ~S & E);

endmodule

module hw5_p1(output [3:0] Y, input [3:0] A, B, input S, E);

assign Y = (E == 1’b1) ? 4’h0 : // Output all 0’s if E is high
(S == 1’b0) ? A : // Output is A if E is 0

B; // Output is B is E is 1
I[3];

endmodule

1

EE 2010 Fall 2010

2. A majority circuit is a circuit with an odd number of inputs whose output is a 1 if and only
if a maority of its inputs are 1.

(a) Find the truth table for a three-input maority circuit.

x y z F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(b) From the truth table, find the Boolean equation for the circuit.
B C

00 101101

0 2

64
1

0

5 7

31

00

0

01

111

 A

F = AB + AC + BC

(c) Write a Verilog dataflow model of the circuit.

module hw5_p2(output F, input x, y, z);

assign F = (x & y) | (x & z) | (y & z);

endmodule

3. Problem 4.8. Treat this as a 4-input, 4-output combinational circuit, find the truth table,
and use Karnaugh maps to simplify.

Take the 8, 4, -2, -1 column as the inputs and the 8421 column as the outputs. The ”Unused
bit combinations” can be treated as a ”don’t care”, or can result in the last six rows of the
table. I have done it both ways. Reaarange the rows so the inputs are in numerical order
(0000, 0001, ..., 1111):

2

EE 2010 Fall 2010

Inputs With Complete Decoding With Don’t Cares
I3 I2 I1 I0 O3 O2 O1 O0 O3 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 x x x x
0 0 1 0 1 0 1 1 x x x x
0 0 1 1 1 1 0 0 x x x x
0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 1 1 0 0 1 1
0 1 1 0 0 0 1 0 0 0 1 0
0 1 1 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 1 1 1 0 1 1 1
1 0 1 0 0 1 1 0 0 1 1 0
1 0 1 1 0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 1 x x x x
1 1 0 1 1 1 1 0 x x x x
1 1 1 0 1 1 1 1 x x x x
1 1 1 1 1 0 0 1 1 0 0 1

x

00 101101

00

01

11

10

14

0 1 3 2

6754

12 13 15

8 9 11 10

I I

0

I I
1 0

3 2

1 11

1

1 1 1

0 0 0 0

00

1

00 101101

00

01

11

10

14

0 1 3 2

6754

12 13 15

8 9 11 10

I I

0

I I
1 0

3 2

1

1

0 0 0 0

0000

x x

x xx

O3 = I3I2 + I3I
′
1I

′
0 + I ′

3I
′
2I0 + I ′

3I
′
2I1 or O3 = I3I2 + I3I

′
1I

′
0

x

00 101101

00

01

11

10

14

0 1 3 2

6754

12 13 15

8 9 11 10

0

I I

I I
1 0

3 2

1

1

1 1 1

111

0 0

0 0 0

0

0

00 101101

00

01

11

10

14

0 1 3 2

6754

12 13 15

8 9 11 10

0

I I

I I
1 0

3 2

1

1 1 1

0 0 0

0

0

x x x

xx

O2 = I2I
′
1I

′
0 + I3I

′
1I0 + I ′

2I1I0 + I3I1I
′
0 or O2 = I ′

2I1 + I ′
2I0 + I2I

′
1I

′
0

3

EE 2010 Fall 2010

x

00 101101

00

01

11

10

14

0 1 3 2

6754

12 13 15

8 9 11 10

0 1

I I

I I
1 0

3 2

1

1 1

1 1

11

0

0

0 0

0

0

0

00 101101

00

01

11

10

14

0 1 3 2

6754

12 13 15

8 9 11 10

0

I I

I I
1 0

3 2

1 1

11

0

0 0

0

0

x x x

xx

O1 = I ′
1I0 + I1I

′
0 or O1 = I ′

1I0 + I1I
′
0

x

00 101101

00

01

11

10

14

0 1 3 2

6754

12 13 15

8 9 11 10

I I

0

I I
1 0

3 2

10 0

0 1 1

1 1

1 1 1

0

00

0

00 101101

00

01

11

10

14

0 1 3 2

6754

12 13 15

8 9 11 10

I I

0

I I
1 0

3 2

0 1 1

1 1

1

0

00

x x x

xx

O0 = I1I
′
0 + I3I2I1 + I3I2I

′
0 + I ′

3I2I
′
1I0 + I3I

′
2I

′
1I0 or O0 = I ′

1I0 + I1I
′
0 + I3I2

4. (a) Design a full subtractor circuit with three inputs x, y, Bin, and two outputs D and
Bout. The circuit subtracts x − y − Bin. Bout is 0 if no borrow is needed to complete
the subtraction, and 1 if a borrow is needed. Find the truth table, and simplify the
equations for D and Bout using Karnaugh maps.
x− y −Bin

For example, x = 0, y = 1 and Bin = 1: 0 - 1 - 1, or 0 - 2. To do this, you need to borrow
from the next column, so Bout will be a 1. When you borrow from the next column, the
borrow in brings you a 2, so the equation for D is 2 - 2 = 0, so 0− 1− 1 gives Bout = 1,
D = 0.

x y Bin Bout Diff

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

4

EE 2010 Fall 2010

out

00 101101

0 2

64

y B

1

0

 x

5 7

31

00 101101

0 2

64

y B

1

0

 x

5 7

31

in in

0 01 11

0 0 01

1 10

0 01 1

B D

Bout = x′y + x′Bin + yBin D = x⊕ y ⊕Bin

(b) Draw a block diagram showing how four full subtractors can be used to implement a
4-bit subtraction.

X1

x y

D

Bout Bin

x y

D

Bout Bin

x y

D

Bout Bin

x y

D

Bout Bin

D0

X0 Y0

D1D2D3

Bout
B3 B2 B1

X3 Y3 X2 Y2 Y1

(c) Write a Verilog dataflow model to implement the circuit of Part (b).
Easy way:

module sub_4_bit(input [3:0] X, Y, output [3:0] D, output B);

// Calculate 4-bit difference D = X - Y, and output borrow B_out

assign {B,D} = X - Y;

endmodule

5

EE 2010 Fall 2010

Harder way:

module full_sub(output D, B_out, input x, y, B_in);

// Calculate 1-bit difference D = x - y - Bin, and output borrow B_out

assign D = (x ^ y) ^ B_in;
assign B_out = (!x & y) | (!x & B_in) | (y & B_in);

endmodule

module sub_4_bit(input [3:0] X, Y, output [3:0] D, output B_out);

// Calculate 4-bit difference D = X - Y, and output borrow B_out

wire B1, B2, B3

full_sub FS0 (D[0], B1, X[0], Y[0], 1’b0);
full_sub FS1 (D[1], B2, X[1], Y[1], B1);
full_sub FS2 (D[2], B3, X[2], Y[2], B2);
full_sub FS3 (D[3], B_out, X[3], Y[3], B3);

endmodule

5. (a) The adder-subtractor circuit of Fig. 4.13 has the following values for mode input M and
data inputs A and B:

M A B
(a) 0 0011 0101
(b) 0 1101 1101
(c) 1 0100 0011
(d) 1 0000 0001

In each case determine the values of the four SUM outputs, the carry C, and overflow
V.
The circuit of Figure 4.13 gives the following outputs. Note that the C bit is incorrect
for subtraction. (For subtraction, the C bit should be 1 if a borrow is needed and 0 if it
is not; the circuit of Figure 4.13 gives the inverse of this.)

M A B SUM C V
(a) 0 0011 0101 1000 0 1
(b) 0 1101 1101 1010 1 0
(c) 1 0100 0011 0001 1 0
(d) 1 0000 0001 1111 0 0

I will accept the following, where the C bit in now the correct borrow out on subtraction.
You can get this output by modifying Figure 4.13 so that Cout is the XOR of C4 and M .

6

EE 2010 Fall 2010

M A B SUM C V
(a) 0 0011 0101 1001 0 1
(b) 0 1101 1101 1010 1 0
(c) 1 0100 0011 0001 0 0
(d) 1 0000 0001 1111 1 0

(b) Using the conditional operator (?:), write a Verilog dataflow description of the four-bit
adder-subtractor of Fig. 4.13.
Easy way:

module add_sub_4_bit (output [3:0] S, output C, V, input [3:0] A, B, input M);

// To get the carry (borrow) and sum (difference), just add (subtract) based
// on the value of M

assign {C,S} = (M == 1’b0) ? A + B : A - B;

// To get the overflow:
// On add (M==0), overflow when P + P = N or N + N = P
// On subtract (M==0), overflow when P - N = N or N - P = P

assign V = ((M==0) && ((!A[3] & !B[3] & S[3]) | (A[3] & B[3] & !S[3]))) ? 1’b1 :
((M==1) && ((!A[3] & B[3] & S[3]) | (A[3] & !B[3] & !S[3]))) ? 1’b1 :

1’b0;

endmodule

7

EE 2010 Fall 2010

Harder way:

module full_add(output S, C_out, input x, y, C_in);

// Calculate 1-bit sum S = x + y + C_in, and output carry C_out

assign S = (x ^ y) ^ C_in;
assign C_out = (x & y) | (x & C_in) | (y & C_in);

endmodule

module add_sub_4_bit (output [3:0] S, output C, V, input [3:0] A, B, input M);

// Calculate 4-bit sum S = X + Y + C_in, and output carry C_out

wire C1, C2, C3, C4;

full_add FA0 (S[0], C1, A[0], B[0]^M, M);
full_add FA1 (S[1], C2, A[1], B[1]^M, C1);
full_add FA2 (S[2], C3, A[2], B[2]^M, C2);
full_add FA3 (S[3], C4, A[3], B[3]^M, C3);

assign V = C4 ^ C3;
assign C = C4 ^ M;

endmodule

6. For the circuit shown in Fig. 4.13 of the text, verify that the V output bit is correct for the
addition operation. That is, show that (a) V will be 1 when you add two positive numbers
together (B3 = 0 and A3 = 0) and get a negative number (S3 = 1), (b) V will be 1 when
you add two negative numbers together (B3 = 1 and A3 = 1) and you get a positive number
(S3 = 0), and (c) the V output will be 0 in all other circumstances (adding two positives and
getting a positive, adding two negatives and getting a negative, or adding a positive and a
negative number).

There are six possibilities: P + P = P, P + P = N, P + N = P, P + N = N, N + N = P, or
N + N = N. Note that for addition, M is 0, so the inputs to the last full adder are A3 and
B3.

P + P = P: Should get V = 0.
A3 = 0, B3 = 0, and S3 = 0. With A3 = 0 and B3 = 0 S3 will be 0 only if C3 is 0. Since
A3 = 0, B3 = 0, and C3 = 0, the carry C4 will be 0. C3 = 0 and C4 = 0, so V will be 0.

P + P = N: Should get V = 1.
A3 = 0, B3 = 0, and S3 = 1. With A3 = 0 and B3 = 0 S3 will be 1 only if C3 is 1. Since
A3 = 0, B3 = 0, and C3 = 1, the carry C4 will be 0. C3 = 1 and C4 = 0, so V will be 1.

P + N = P: Should get V = 0.
A3 = 0, B3 = 1, and S3 = 0. With A3 = 0 and B3 = 1 S3 will be 0 only if C3 is 1. Since
A3 = 0, B3 = 1, and C3 = 1, the carry C4 will be 1. C3 = 1 and C4 = 1, so V will be 0.

8

EE 2010 Fall 2010

P + N = N: Should get V = 0.
A3 = 0, B3 = 1, and S3 = 1. With A3 = 0 and B3 = 1 S3 will be 1 only if C3 is 0. Since
A3 = 0, B3 = 1, and C3 = 0, the carry C4 will be 0. C3 = 0 and C4 = 0, so V will be 0.

N + N = P: Should get V = 1.
A3 = 1, B3 = 1, and S3 = 0. With A3 = 1 and B3 = 1 S3 will be 0 only if C3 is 0. Since
A3 = 1, B3 = 1, and C3 = 0, the carry C4 will be 1. C3 = 0 and C4 = 1, so V will be 1.

N + N = N: Should get V = 0.
A3 = 1, B3 = 1, and S3 = 1. With A3 = 1 and B3 = 1 S3 will be 1 only if C3 is 1. Since
A3 = 1, B3 = 1, and C3 = 1, the carry C4 will be 1. C3 = 1 and C4 = 1, so V will be 0.

7. Assume that inverter gates have a propagation delay of 5 ns and that AND, OR, NAND and
NOR gates have a propagation delay of 10 ns. What is the total propagation delay of the
four-bit magnitude comparator circuit of Fig. 4.17?

Each output goes through five gates (NOT, AND, NOR, AND, OR), so the propagation delay
for every output is 5 ns + 10 ns + 10 ns + 10 ns + 10 ns = 45 ns.

9

