## EE 231 - Homework 6

Due October 8, 2010

1. Problem 4.16

Define the carry propagate and carry generate as

$$
\begin{aligned}
P_{i} & =A_{i}+B_{i} \\
G_{i} & =A_{i} B_{i}
\end{aligned}
$$

respectively. Show that the output carry and the output sum of a full adder becomes

$$
\begin{aligned}
C_{i+1} & =\left(C_{i}^{\prime} G_{i}^{\prime}+P i^{\prime}\right)^{\prime} \\
S_{i} & =\left(P_{i} G_{i}^{\prime}\right) C_{i}
\end{aligned}
$$

Define $P_{i}=A_{i}+B_{i}$ and $G_{i}=A_{i} B_{i}$. Show that $C_{i+1}=\left(C_{i}^{\prime} G_{i}^{\prime}+P_{i}^{\prime}\right)^{\prime}$ and $S_{i}=\left(P_{i} G_{i}^{\prime}\right) \oplus C_{i}$
The output of a full adder is

$$
\begin{aligned}
S_{i} & =A_{i} \oplus B_{i} \oplus C_{i} \\
C_{i+1} & =A_{i} B_{i}+A_{i} C_{i}+B_{i} C_{i} \\
S_{i}= & \left(P_{i} G_{i}^{\prime}\right) \oplus C_{i} \\
= & {\left[\left(A_{i}+B_{i}\right)\left(A_{i} B_{i}\right)^{\prime}\right] \oplus C_{i} } \\
= & {\left[\left(A_{i}+B_{i}\right)\left(A_{i}^{\prime}+B_{i}^{\prime}\right)\right] \oplus C_{i} } \\
= & {\left[A_{i} A_{i}^{\prime}+A_{i} B_{i}^{\prime}+B_{i} A_{i}^{\prime}+B_{i} B_{i}^{\prime}\right] \oplus C_{i} } \\
= & {\left[A_{i} B_{i}^{\prime}+A_{i}^{\prime} B_{i}\right] \oplus C_{i} } \\
= & A_{i} \oplus B_{i} \oplus C_{i} \mathrm{QED} \\
C_{i+1} & =\left(C_{i}^{\prime} G_{i}^{\prime}+P_{i}^{\prime}\right)^{\prime} \\
& =\left(C_{i}^{\prime} G_{i}^{\prime}\right)^{\prime} P_{i} \\
& =\left(C_{i}+G_{i}\right) P_{i} \\
& =\left(C_{i}+A_{i} B_{i}\right)\left(A_{i}+B_{i}\right) \\
& =C_{i} A_{i}+C_{i} B_{i}+A_{i} B_{i} A_{i}+A_{i} B_{i} B_{i} \\
& =A_{i} C_{i}+B_{i} C_{i}+A_{i} B_{i}+A_{i} B_{i} \\
& =A_{i} C_{i}+B_{i} C_{i}+A_{i} B_{i} \mathrm{QED}
\end{aligned}
$$


2. Using a decoder and external gates, design the combinational circuit defined by the following three Boolean functions:
(a) $F_{1}=x^{\prime} y^{\prime} z+x z^{\prime}$
$F_{2}=x^{\prime} y z^{\prime}+x y^{\prime}$
$F_{3}=x y z^{\prime}+x y$
Truth table:

(b) $F_{1}=\left(x+y^{\prime}\right) z^{\prime}$
$F_{2}=x z+y^{\prime} z+y z^{\prime}$
$F_{3}=\left(y+z^{\prime}\right) x$
Truth table:

3. Implement the following Boolean functions with a multiplexer:
(a) $F(w, x, y, z)=\Sigma(2,3,5,6,11,14,15)$

(b) $F(w, x, y, z)=\Pi(3,10,11)$

| $w$ | $x$ | $y$ | $z$ | $F$ |  |
| :---: | :---: | :---: | :---: | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 | $F=1$ |
| 0 | 0 | 0 | 1 | 1 |  |
| 0 | 0 | 1 | 0 | 1 | $F=z$ |
| 0 | 0 | 1 | 1 | 0 |  |
| 0 | 1 | 0 | 0 | 1 | $F=1$ |
| 0 | 1 | 0 | 1 | 1 |  |
| 0 | 1 | 1 | 0 | 1 | $F=1$ |
| 0 | 1 | 1 | 1 | 1 |  |
| 1 | 0 | 0 | 0 | 1 | $F=1$ |
| 1 | 0 | 0 | 1 | 1 |  |
| 1 | 0 | 1 | 0 | 0 | $F=0$ |
| 1 | 0 | 1 | 1 | 0 |  |
| 1 | 1 | 0 | 0 | 1 | $F=1$ |
| 1 | 1 | 0 | 1 | 1 |  |
| 1 | 1 | 1 | 0 | 1 | $F=1$ |
| 1 | 1 | 1 | 1 | 1 |  |

4. Write a Verilog dataflow description to implement the Boolean functions of Problem 3.
```
module hw6_p3(input w, x, y, z, output Fa, Fb);
// Fa = Sum (2,3,5,6,11,14,15)
// Fa = Prod (3,10,11)
// OR together minterms of Fa
assign Fa = (~w & ~}x & y & ~~z) | ( ~w & ~x & y & z) | ( ~w & x & ~ y & z) |
    (~w & x & y & ~z) | ( w & ~ x & y & z) | ( w & x & y & ~z) |
    ( w & x & y & z);
// AND together maxterms of Fb
assign Fb = (~w | ~x | y | z) & ( w | ~x | y | ~z) & ( w | ~x | y | z);
endmodule
```

5. Implement a full adder with two 4 x 1 multiplexers. Note: the truth table for the full adder is:

6. An $8 \times 1$ multiplexer has inputs $A, B$ and $C$ connected to the selection inputs $S_{2}, S_{1}$, and $S_{0}$ respectively. The data inputs through $I_{0}$ through $I_{7}$ are as follows:
(a) $I_{1}=I_{2}=I_{4}=0 ; I_{3}=I_{5}=1 ; I_{0}=I_{7}=D$; and $I_{6}=D^{\prime}$.
(b) $I_{2}=I_{3}=0 ; I_{4}=I_{5}=I_{7}=1 ; I_{0}=I_{6}=D$; and $I_{1}=D^{\prime}$.

Determine the Boolean function that the multiplexer implements.
(a)
$I_{1}=I_{2}=I_{4}=0 ; I_{3}=I_{5}=1 ; I_{0}=I_{7}=D ;$ and $I_{6}=D^{\prime}$.

| $A$ | $B$ | $C$ | $D$ | $F$ |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| 0 | 0 | 0 | 0 | 1 |
| 0 | $F=D$ |  |  |  |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 |$|$

$F=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C D^{\prime}+A^{\prime} B C D+A B^{\prime} C D^{\prime}+A B^{\prime} C D+A B C^{\prime} D+A B C D^{\prime}$
$F=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B C+A B^{\prime} C+A B C^{\prime} D+A C D^{\prime}$
(b)
$I_{2}=I_{3}=0 ; I_{4}=I_{5}=I_{7}=1 ; I_{0}=I_{6}=D ;$ and $I_{1}=D^{\prime}$.

| $A$ | $B$ | $C$ | $D$ | $F$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 | $F=D$ |
| 0 | 0 | 0 | 1 | 0 |  |
| 0 | 0 | 1 | 0 | 0 | $F=D^{\prime}$ |
| 0 | 0 | 1 | 1 | 1 |  |
| 0 | 1 | 0 | 0 | 0 | $F=0$ |
| 0 | 1 | 0 | 1 | 0 |  |
| 0 | 1 | 1 | 0 | 0 | $F=0$ |
| 0 | 1 | 1 | 1 | 0 |  |
| 1 | 0 | 0 | 0 | 1 | $F=1$ |
| 1 | 0 | 0 | 1 | 1 |  |
| 1 | 0 | 1 | 0 | 1 | $F=1$ |
| 1 | 0 | 1 | 1 | 1 |  |
| 1 | 1 | 0 | 0 | 1 | $F=D$ |
| 1 | 1 | 0 | 1 | 0 |  |
| 1 | 1 | 1 | 0 | 1 | $F=1$ |
| 1 | 1 | 1 | 1 | 1 |  |

$F=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B^{\prime} C D+A B^{\prime} C^{\prime} D^{\prime}+A B^{\prime} C^{\prime} D+A B^{\prime} C D^{\prime}+A B^{\prime} C D+A B C^{\prime} D^{\prime}+A B C D$
$F=B^{\prime} C^{\prime} D^{\prime}+B^{\prime} C D+A B^{\prime}+A D^{\prime}+A C$
7. Problem 4.39. Use a behavioral description to implement the problem. Do not write a gate level or dataflow description.

Write an HDL behavioral description of a four-bit comparator with a six-bit output $Y$ [5:0]. Bit 5 of $Y$ is for "equals", bit 4 is for "not equal to", bit 3 is for "greater than", bit 2 is for "less than", bit 1 for "greater than or equal to", and bit 0 for "less than or equal to".
module four_bit_comparator(input [3:0] A, B, output reg [5:0] Y);
always @(A, B) begin
$Y=6 ' b 000000$;
if ( $\mathrm{A}==\mathrm{B}$ ) $Y[5]=1^{\prime} \mathrm{b} 1$;
if (A ! = B) Y[4] = 1'b1;
if (A > B) Y[3] = 1'b1;
if ( $\mathrm{A}>=\mathrm{B}$ ) $\mathrm{Y}[2]=1^{\prime} \mathrm{b} 1$;
if $(A<B) Y[1]=1 \prime b 1$;
if ( $\mathrm{A}<=\mathrm{B}$ ) $\mathrm{Y}[0]=1^{\prime} \mathrm{b} 1$;
end
endmodule
8. Problem 4.50.

Using a case statement, develop and simulate a behavioral model of the 84-2-1 to BCD code converter described in Problem 4.8.

```
module code_converter(input [3:0] C84_2_1, output reg [3:0] BCD);
always @(C84_2_1)
        case (C84_2_1)
            4'b0000: BCD = 4'b0000;
            4'b0111: BCD = 4'b0001;
            4'b0110: BCD = 4'b0010;
            4'b0101: }\quad\textrm{BCD}=4'b0011
            4'b0100: BCD = 4'b0100;
            4'b1011: BCD = 4'b0101;
            4'b1010: BCD = 4'b0110;
            4'b1001: BCD = 4'b0111;
            4'b1000: BCD = 4'b1000;
            4'b1111: BCD = 4'b1001;
default: BCD = 4'bxxxx;
endcase
endmodule
```


9. Using a case statement, write an HDL behavioral description of an eight-bit arithmetic-logic unit (ALU). The ALU needs to implement the 10 functions listed below. The inputs are two eight-bit numbers $A$ and $B$, and select inputs $S$ (where $S$ has enough bits to select the ten functions). The outputs are the eight-bit result $R$, a zero-bit $Z$, and a carry bit $C$. The $C$ bit is described in the table below. (X means Don't Care.) The zero bit $Z$ is 1 if all the bits of the eight-bit result are 0 , and is 0 otherwise.

| Name | Description | R | C | Z |
| :--- | :--- | :--- | :--- | :--- |
| LOAD | Load input A | $A$ | X | 1 if $R==0$ |
| ADDA | Add inputs | $A+B$ | Carry | 1 if $R==0$ |
| SUBA | Subtract inputs | $A \& B$ | Borrow | 1 if $R==0$ |
| ANDA | AND inputs | $A \mid B$ | X | 1 if $R==0$ |
| ORAA | OR inputs | X | 1 if $R==0$ |  |
| COMA | Bitwise Complement input A | $\sim A$ | 1 | 1 if $R==0$ |
| INCA | Increment input A | $A+1$ | X | 1 if $R==0$ |
| LSRA | Logical Shift Right <br> input A | $0=>R[7]$ | $A[0]$ | 1 if $R==0$ |
| LSLA | Logical Shift Left <br> input A | $0=>R[7]=>R[6: 0]$ | $A[7]$ | 1 if $R==0$ |
|  | $A[6: 0]=>R[7: 1]$ |  |  |  |
| ASRA | Arithmetic Shift Right <br> input A | $A[7]=>R[7]$ | $A[0]$ | 1 if $R==0$ |
|  | $A[7: 1]=>R[6: 0]$ |  |  |  |

