EE 231 – Homework 7 Due October 15, 2010

1. Show how to build a J-K flip-flop using a T flip-flop and some combinational logic.

A J-K flipflop is a synchronous sequential circuit with two inputs (J and K) and one state flip-flop (A). We design this from a state transition table. We use a table like Table 5.5 (p. 205 of the text).

Present			Next	Flip-Flop
State	Input		State	Inputs
A	J	K	A	T_A
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	1	0
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

To find T_A look at the present state of A and the next state of A. If they are the same, the flip-flop should not toggle (T_A should be 0); if they are different, the flip-flop should toggle (T_A should be 1). We draw a three-input (A,J, K), one-output (T_A) Karnaugh map:

 $T_A = A'J + AK$

The circuit looks like this:

2. Figure 5.6 of the text shows one way to build a D latch. The figure below shows another way. Show that the below functions identically to the D latch of Figure 5.6.

- (a) If En is low, the outputs of G1 and G2 are high, and the RS latch made up of G3 and G4 holds the last value.
- (b) If En is high and D is high, then the output of G1 (S) goes low, forcing the output of G2 (R) high. With S low and R high, the output of G3 (D) goes high, setting the D latch.
- (c) If En is high and D is low, then the output of G1 (S) goes high, forcing the output of G2 (R) low. With S high and R low, the output of G3 (D) goes low, resetting the D latch.

This is the same behavior as the D latch of Figure 5.6. This circuit is easier to build because it requires one fewer gate.

3. A sequential circuit with two D flip-flops A and B, one input x, and one output z is specified by the following next-state and output equations:

$$A(t+1) = A' + B$$

 $B(t+1) = B'x$
 $z = A + B'$

(a) Draw the logic diagram of the circuit.

(b) List the state table for the circuit.

Pre	sent		\mathbf{ext}				
State		Input	Sta	ate	Output		
A	B	x	A	B	z		
0	0	0	1	0	1		
0	0	1	1	1	1		
0	1	0	1	0	0		
0	1	1	1	0	0		
1	0	0	0	0	1		
1	0	1	0	1	1		
1	1	0	1	0	1		
1	1	1	1	0	1		

(c) Draw the corresponding state diagram.

4. A sequential circuit has three flip-flips A, B and C, and two inputs x and y, as shown below.

(a) Derive the state table of the sequential circuit. The equations are:

$$A(t+1) = x$$

$$B(t+1) = [(Ay)'C]' = (Ay) + C'$$

$$C(t+1) = [(y+B')' + A]' = (y+B')A' = A'y + A'B'$$

Here is the state transition table:

Р	resei	nt			Next				
e e e e e e e e e e e e e e e e e e e	State	Э	Inp	outs	State				
A	B C		x	y	A	B	C		
0	0	0	0	0	0	1	1		
0	0	0	0	1	0	1	1		
0	0	0	1	0	1	1	1		
0	0	0	1	1	1	1	1		
0	0	1	0	0	0	0	0		
0	0	1	0	1	0	0	1		
0	0	1	1	0	1	0	0		
0	0	1	1	1	1	0	1		
0	1	0	0	0	0	1	1		
0	1	0	0	1	0	1	1		
0	1	0	1	0	1	1	1		
0	1	0	1	1	1	1	1		
0	1	1	0	0	0	0	0		
0	1	1	0	1	0	0	1		
0	1	1	1	0	1	0	0		
0	1	1	1	1	1	0	1		
1	0	0	0	0	0	1	0		
1	0	0	0	1	0	1	0		
1	0	0	1	0	1	1	0		
1	0	0	1	1	1	1	0		
1	0	1	0	0	0	0	0		
1	0	1	0	1	0	1	0		
1	0	1	1	0	1	0	0		
1	0	1	1	1	1	1	0		
1	1	0	0	0	0	1	0		
1	1	0	0	1	0	1	0		
1	1	0	1	0	1	1	0		
1	1	0	1	1	1	1	0		
1	1	1	0	0	0	0	0		
1	1	1	0	1	0	1	0		
1	1	1	1	0	1	0	0		
1	1	1	1	1	1	1	0		

- 00 11 (000) 00 00 00 01 111 10,11 001 11 10,11 ĨQ 10 (010 110 10 11 00,01 01 10 ٨ 00,01 11 10,11 101 011 00,01 10 100 10,11 10 90,01
- (b) Derive the state diagram of the sequential circuit.

(c) Write a Verilog module to implement the circuit.

```
module hw7_p4(input clk, x, y, ouput reg A, B, C);
```

endmodule

5. Derive the state table and state diagram of the sequential circuit shown below. Draw a timing diagram for clk, x, A and B for 10 clock ticks, assuming that the machine starts in state 00 and x is always 1. Explain the function that the circuit performs.

The equations are:

 $J_A = x, K_A = B', J_B = x, K_B = A$ State table:

A	B	x	J_A	K_A	J_B	K_B	A	B
0	0	0	0	1	0	0	0	0
0	0	1	1	1	1	0	1	1
0	1	0	0	0	0	0	0	1
0	1	1	1	0	1	0	1	1
1	0	0	0	1	0	1	0	0
1	0	1	1	1	1	1	0	1
1	1	0	0	0	0	1	1	0
1	1	1	1	0	1	1	1	0

		Value at	0 ps 640,0 ns	1.28 us	1.92 us	2.56 us	3.2 us	3.84 us	4.48 us	5.12 us	5.76 us	6.4 us	7.04 us	7.68 us	8.32 us	8.96 us	9.6 us
	Name	18.63 ns	18.625 ns														
<u>u</u> >0	clk	НO															
<u>∎</u> •1	×	H1															
 ² 	Q1	HO															
 ³ 	Q2	HO															
	1																

If the input x is 1, the system counts 3, 2, 1, 3, 2, 1, ...

If the input x is 0 and the state is 00, it stays in 00.

If the input x is 0 and the state is 01, it stays in 01.

If the input x is 0 and the state is 10, it goes to 00 and stays there.

If the input x is 0 and the state is 11, it goes to 10, then 00, and stays there.