EE 231 - Homework 7

Due October 15, 2010

1. Show how to build a J-K flip-flop using a T flip-flop and some combinational logic.

A J-K flipflop is a synchronous sequential circuit with two inputs (J and K) and one state flip-flop (A). We design this from a state transition table. We use a table like Table 5.5 (p. 205 of the text).

Present State	Input		Next State	Flip-Flop Inputs
A	J	K	A	T_{A}
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	1	0
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

To find T_{A} look at the present state of A and the next state of A. If they are the same, the flip-flop should not toggle (T_{A} should be 0); if they are different, the flip-flop should toggle (T_{A} should be 1). We draw a three-input (A, J, K), one-output $\left(T_{A}\right)$ Karnaugh map:

$T_{A}=A^{\prime} J+A K$
The circuit looks like this:

2. Figure 5.6 of the text shows one way to build a D latch. The figure below shows another way. Show that the below functions identically to the D latch of Figure 5.6.

(a) If $E n$ is low, the outputs of $G 1$ and $G 2$ are high, and the RS latch made up of $G 3$ and $G 4$ holds the last value.
(b) If $E n$ is high and D is high, then the output of $G 1(S)$ goes low, forcing the output of $G 2(R)$ high. With S low and R high, the output of $G 3(D)$ goes high, setting the D latch.
(c) If $E n$ is high and D is low, then the output of $G 1(S)$ goes high, forcing the output of $G 2(R)$ low. With S high and R low, the output of $G 3(D)$ goes low, resetting the D latch.

This is the same behavior as the D latch of Figure 5.6. This circuit is easier to build because it requires one fewer gate.
3. A sequential circuit with two D flip-flops A and B, one input x, and one output z is specified by the following next-state and output equations:

$$
\begin{aligned}
A(t+1) & =A^{\prime}+B \\
B(t+1) & =B^{\prime} x \\
z & =A+B^{\prime}
\end{aligned}
$$

(a) Draw the logic diagram of the circuit.

(b) List the state table for the circuit.

Present State		Input	Next State	Output
A	B		$A \quad B$	z
0	0	0	10	1
0	0	1	11	1
0	1	0	10	0
0	1	1	10	0
1	0	0	00	1
1	0	1	$0 \quad 1$	1
1	1	0	10	1
1	1	1	10	1

(c) Draw the corresponding state diagram.

4. A sequential circuit has three flip-flips A, B and C, and two inputs x and y, as shown below.

(a) Derive the state table of the sequential circuit.

The equations are:

$$
\begin{gathered}
A(t+1)=x \\
B(t+1)=\left[(A y)^{\prime} C\right]^{\prime}=(A y)+C^{\prime} \\
C(t+1)=\left[\left(y+B^{\prime}\right)^{\prime}+A\right]^{\prime}=\left(y+B^{\prime}\right) A^{\prime}=A^{\prime} y+A^{\prime} B^{\prime}
\end{gathered}
$$

Here is the state transition table:

Present State			Inputs		Next State		
A	B	C	x	y	A	B	C
0	0	0	0	0	0	1	1
0	0	0	0	1	0	1	1
0	0	0	1	0	1	1	1
0	0	0	1	1	1	1	1
0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	1
0	0	1	1	0	1	0	0
0	0	1	1	1	1	0	1
0	1	0	0	0	0	1	1
0	1	0	0	1	0	1	1
0	1	0	1	0	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	0	1	0	0
0	1	1	1	1	1	0	1
1	0	0	0	0	0	1	0
1	0	0	0	1	0	1	0
1	0	0	1	0	1	1	0
1	0	0	1	1	1	1	0
1	0	1	0	0	0	0	0
1	0	1	0	1	0	1	0
1	0	1	1	0	1	0	0
1	0	1	1	1	1	1	0
1	1	0	0	0	0	1	0
1	1	0	0	1	0	1	0
1	1	0	1	0	1	1	0
1	1	0	1	1	1	1	0
1	1	1	0	0	0	0	0
1	1	1	0	1	0	1	0
1	1	1	1	0	1	0	0
1	1	1	1	1	1	1	0

(b) Derive the state diagram of the sequential circuit.

(c) Write a Verilog module to implement the circuit.

```
module hw7_p4(input clk, x, y, ouput reg A, B, C);
always @(posedge clk) begin
    A <= x;
    B <= (A&y) + " C;
    C <= (~A & y) + (~A & B);
end
endmodule
```

5. Derive the state table and state diagram of the sequential circuit shown below. Draw a timing diagram for clk, x, A and B for 10 clock ticks, assuming that the machine starts in state 00 and x is always 1 . Explain the function that the circuit performs.

The equations are:
$J_{A}=x, K_{A}=B^{\prime}, J_{B}=x, K_{B}=A$
State table:

A	B	x	J_{A}	K_{A}	J_{B}	K_{B}	A	B
0	0	0	0	1	0	0	0	0
0	0	1	1	1	1	0	1	1
0	1	0	0	0	0	0	0	1
0	1	1	1	0	1	0	1	1
1	0	0	0	1	0	1	0	0
1	0	1	1	1	1	1	0	1
1	1	0	0	0	0	1	1	0
1	1	1	1	0	1	1	1	0

			Pps 644,0ns	1.28 us	1.92 us	2.56 us	3.2.us	3.84 us	4.48us	5.12 us	5.76 us	6.4 us	7.04 us	7.68 us	8.32 us	8.96us	9.6 us
	Name	${ }_{\text {V1a }} 18.63$ ns	18.625 ns														
-0	dk	HO	\square			,											
-1	\times	H1															
2	Q1	но															
3	Q2	но															

If the input x is 1 , the system counts $3,2,1,3,2,1, \ldots$
If the input x is 0 and the state is 00 , it stays in 00 .
If the input x is 0 and the state is 01 , it stays in 01 .
If the input x is 0 and the state is 10 , it goes to 00 and stays there.
If the input x is 0 and the state is 11 , it goes to 10 , then 00 , and stays there.

