
EE 231 Fall 2010

EE 231

Homework 8

Due October 20, 2010

1. Consider the circuit below. It has three inputs (x and clock), and one output (z). At reset,
the circuit starts with the outputs of all flip-flops at 0.

clk

z

x

Q’

Q’

D

J Q

Q

K

(a) Is this a Mealy machine or a Moore machine?
The output depends on one of the present inputs (x) as well as the present state, so it
is a Mealy machine.

(b) Derive the state transition table for the circuit
Call the output of the J-K flip-flop A and the output of the D flip-flop B. We need to
find the J and K inputs to the J-K flip flop (JA, KA). From these, we can find the next
state of A. The next state of B will be the input to the D flip-flop.
JA = Bx
KA = x + B′

DB = B′x′ + A′B
z = AB′x

A B x JA KA A B z

0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 0 0 1 0 1 0
1 0 1 0 1 0 0 1
1 1 0 0 0 1 0 0
1 1 1 1 1 0 0 0

(c) Draw a state diagram for the circuit.
1/0

0/0

0/0

1/1
0/0

1/0

00

10

0111
1/0

0/0

1

EE 231 Fall 2010

(d) Write a Verilog program to implement the functionality of the circuit. Be sure to reset
the machine with all flip-flops at 0.
We could implement a J-K flip-flop in a Verilog module, then use that flip-flop and the
equations for JA and KA. Instead, I will tell the Verilog compiler implement the state
transition table.

module hw8_p1(input x, clk, output z);

reg A,B;

always @(posedge clk)
if (~A & ~B & ~x) begin

A <= 0; B <= 1;
end
if (~A & ~B & x) begin

A <= 0; B <= 0;
end
if (~A & B & ~x) begin

A <= 0; B <= 1;
end
if (~A & B & x) begin

A <= 1; B <= 1;
end
if (A & ~B & ~x) begin

A <= 0; B <= 1;
end
if (A & ~B & x) begin

A <= 0; B <= 0;
end
if (A & B & ~x) begin

A <= 1; B <= 0;
end
if (A & B & x) begin

A <= 0; B <= 0;
end

assign z = A & ~B & x;

endmodule

2

EE 231 Fall 2010

2. Consider the following state transition table. It implements a twisted ring counter:

Present Next
State State

A B C A B C

0 0 0 1 0 0
1 0 0 1 1 0
1 1 0 1 1 1
1 1 1 0 1 1
0 1 1 0 0 1
0 0 1 0 0 0

(a) Draw a state diagram for the system.

001

000

100

110

111

011

(b) Write a Verilog program to implement the system.

module hw8_p2(input clock, output reg A, B, C);

always @(posedge clock)
case ({A,B,C})

3’b000: {A,B,C} <= 3’b100;
3’b100: {A,B,C} <= 3’b110;
3’b110: {A,B,C} <= 3’b111;
3’b111: {A,B,C} <= 3’b011;
3’b011: {A,B,C} <= 3’b001;
3’b001: {A,B,C} <= 3’b000;
default: {A,B,C} <= 3’b000;

endcase

endmodule

3

EE 231 Fall 2010

3. Design a synchronous sequential circuit to control the operation of an automatic coffee ma-
chine. A cup of coffee costs 15¢ and the machine has two input slots. In one slot, only 10¢
coins can be inserted; in the other, only 5¢ coins. The machine will give change in 5¢ coins
only, and only one such coin per transaction.

(a) Draw a state diagram for the circuit.
There are two inputs: a nickel deposited (n) or a dime deposited (d). I will assume you
cannot put in a nickel and a dime at the same time.
There are two outputs: dispense of cup of coffee (k) and give a nickel change (c).
You could design this as a Mealy machine or a Moore machine. Here I design it as a
Moore machine.
There are 5 states: No money deposited, 5¢ deposited, 10¢ deposited, 15¢ and 20¢.
When 15¢ is deposited, the dispenser should dispense a cup of coffee. When 20¢ is
deposited, the dispenser should dispense a cup of coffee and return 5¢ change.

00

xx
01

10

10

00

00

00

10
01

S0

S5

S10

S20 S15

00

1011

00

00

Input order: nickel dime

Output order: coffee change

I assume that another coin cannot be inserted betwen states S15 and S0, or between
states S20 and S0. This is a reasonable assumption – it will take at least several
milliseconds before a person can deposit another coin and the coin can fall into the coin
box, while the time between state S15 and S0 is one clock cycle, probably less than a
microsecond.

4

EE 231 Fall 2010

(b) Assign states, and draw a state transition table.
There are five states, so you need at least three flip-flops. To simplify the output logic,
I make the following state assignments:

State A B C n d A B C k c

0 0 0 0 0 0 0 0 0 0
S0 0 0 0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0
0 0 0 1 1 x x x x x
0 0 1 0 0 0 0 1 0 0

S5 0 0 1 0 1 0 1 0 0 0
0 0 1 1 0 1 0 0 0 0
0 0 1 1 1 x x x x x
0 1 0 0 0 0 1 0 0 0

S10 0 1 0 0 1 1 0 0 0 0
0 1 0 1 0 1 0 1 0 0
0 1 0 1 1 0 x x x x
1 0 0 0 0 0 0 0 1 0

S15 1 0 0 0 1 x x x x x
1 0 0 1 0 x x x x x
1 0 0 1 1 x x x x x
1 0 1 0 0 0 0 0 0 0

S20 1 0 1 0 1 x x x x x
1 0 1 1 0 x x x x x
1 0 1 1 1 x x x x x

5

EE 231 Fall 2010

(c) Write a Verilog program to implement the circuit.

module hw8_p3(input clock, n, d, output k, c);

reg [2:0] state;

parameter S0 = 3’b000,
S5 = 3’b001,
S10 = 3’b010,
S15 = 3’b100,
S20 = 3’b101;

always @(posedge clock)
case (state)

S0: if (n) state <= S5;
else if (d) state <= S10;
else state <= S0;

S5: if (n) state <= S10;
else if (d) state <= S15;
else state <= S5;

S10: if (n) state <= S15;
else if (d) state <= S20;
else state <= S10;

S15: state <= S0;
S20: state <= S0;
default: state <= S0;

endcase

assign k = ((state == S15) || (state == S20)) ? 1’b1 : 1’b0;
assign c = (state == S20) ? 1’b1 : 1’b0;

endmodule

6

EE 231 Fall 2010

4. Here I will repeat Problem 3, but design the system as a Mealy machine. For a Mealy machine,
you don’t need the states S15 or S20. If you are in state S10 and someone deposits a nickel,
the machine can dispense a cup of coffee and go back to state S0.

Here is the state machine:

00/00

Input order: nickel dime

Output order: coffee change

S0

S10

S5

11/11

10/10

01/10 01/00

10/00

00/00

10/00

00/00

7

EE 231 Fall 2010

Here is a Verilog program:

module hw8_p3(input clock, n, d, output reg k, c);

reg [1:0] state;

parameter S0 = 3’b000,
S5 = 3’b001,
S10 = 3’b010;

always @(posedge clock)
case (state)

S0: if (n) state <= S5;
else if (d) state <= S10;
else state <= S0;

S5: if (n) state <= S10;
else if (d) state <= S0;
else state <= S5;

S10: if (n) state <= S0;
else if (d) state <= S0;
else state <= S10;

default: state <= S0;
endcase

always @(state, n, d) begin
if ((state == S5) && (d)) k = 1;
else if ((state == S10) && (n)) k = 1;
else if ((state == S10) && (d)) k = 1;
else k = 0;

if ((state == S10) && (d)) c = 1;
else c = 0;

end

endmodule

8

